Author
Listed:
- Ruslana Bryk
(Department of Microbiology and Immunology Weill Medical College of Cornell University)
- Patrick Griffin
(Basic Chemistry Analytical Support, Merck Research Laboratories)
- Carl Nathan
(Department of Microbiology and Immunology Weill Medical College of Cornell University)
Abstract
Nitric oxide (NO) is present in soil and air, and is produced by bacteria, animals and plants. Superoxide (O-2) arises in all organisms inhabiting aerobic environments. Thus, many organisms are likely to encounter peroxynitrite (OONO-), a product of NO and O-2 that forms at near diffusion-limited rates, and rapidly decomposes upon protonation through isomerization to nitrate (NO-3; ref. 1) while generating hydroxyl radical (.OH) and nitrogen dioxide radical (.NO2) (refs 2, 3), both more reactive than peroxynitrite's precursors. The oxidative, inflammatory, mutagenic and cytotoxic potential (ref. 4) of peroxynitrite contrasts with the anti-oxidant, anti-inflammatory and tissue-protective properties ascribed to NO itself5. Thus, the ability of cells to cope with peroxynitrite is central in determining the biological consequences of NO production. We considered whether cells might be equipped with enzymes to detoxify peroxynitrite. Peroxiredoxins have been identified in most genomes sequenced, but their functions are only partly understood. Here we show that the peroxiredoxin alkylhydroperoxide reductase subunit C (AhpC) from Salmonella typhimurium catalytically detoxifies peroxynitrite to nitrite fast enough to forestall the oxidation of bystander molecules such as DNA. Results are similar with peroxiredoxins from Mycobacterium tuberculosis and Helicobacter pylori. Thus, peroxynitrite reductase activity may be widespread among bacterial genera.
Suggested Citation
Ruslana Bryk & Patrick Griffin & Carl Nathan, 2000.
"Peroxynitrite reductase activity of bacterial peroxiredoxins,"
Nature, Nature, vol. 407(6801), pages 211-215, September.
Handle:
RePEc:nat:nature:v:407:y:2000:i:6801:d:10.1038_35025109
DOI: 10.1038/35025109
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6801:d:10.1038_35025109. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.