IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v407y2000i6800d10.1038_35024000.html
   My bibliography  Save this article

Microtubule motors in mitosis

Author

Listed:
  • David J. Sharp

    (Section of Molecular and Cellular Biology, University of California-Davis)

  • Gregory C. Rogers

    (Section of Molecular and Cellular Biology, University of California-Davis)

  • Jonathan M. Scholey

    (Section of Molecular and Cellular Biology, University of California-Davis)

Abstract

The mitotic spindle uses microtubule-based motor proteins to assemble itself and to segregate sister chromatids. It is becoming clear that motors invoke several distinct mechanisms to generate the forces that drive mitosis. Moreover, in carrying out its function, the spindle appears to pass through a series of transient steady-state structures, each established by a delicate balance of forces generated by multiple complementary and antagonistic motors. Transitions from one steady state to the next can occur when a change in the activity of a subset of mitotic motors tips the balance.

Suggested Citation

  • David J. Sharp & Gregory C. Rogers & Jonathan M. Scholey, 2000. "Microtubule motors in mitosis," Nature, Nature, vol. 407(6800), pages 41-47, September.
  • Handle: RePEc:nat:nature:v:407:y:2000:i:6800:d:10.1038_35024000
    DOI: 10.1038/35024000
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35024000
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35024000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinzhi Zhao & Paul Toselli & Wande Li, 2012. "Microtubules as a Critical Target for Arsenic Toxicity in Lung Cells in Vitro and in Vivo," IJERPH, MDPI, vol. 9(2), pages 1-22, February.
    2. Ana M Rojas & Anna Santamaria & Rainer Malik & Thomas Skøt Jensen & Roman Körner & Ian Morilla & David de Juan & Martin Krallinger & Daniel Aaen Hansen & Robert Hoffmann & Jonathan Lees & Adam Reid & , 2012. "Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6800:d:10.1038_35024000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.