IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v406y2000i6799d10.1038_35023115.html
   My bibliography  Save this article

Automatic design and manufacture of robotic lifeforms

Author

Listed:
  • Hod Lipson

    (Volen Center for Complex Systems, Brandeis University)

  • Jordan B. Pollack

    (Volen Center for Complex Systems, Brandeis University)

Abstract

Biological life is in control of its own means of reproduction, which generally involves complex, autocatalysing chemical reactions. But this autonomy of design and manufacture has not yet been realized artificially1. Robots are still laboriously designed and constructed by teams of human engineers, usually at considerable expense. Few robots are available because these costs must be absorbed through mass production, which is justified only for toys, weapons and industrial systems such as automatic teller machines. Here we report the results of a combined computational and experimental approach in which simple electromechanical systems are evolved through simulations from basic building blocks (bars, actuators and artificial neurons); the ‘fittest’ machines (defined by their locomotive ability) are then fabricated robotically using rapid manufacturing technology. We thus achieve autonomy of design and construction using evolution in a ‘limited universe’ physical simulation2,3 coupled to automatic fabrication.

Suggested Citation

  • Hod Lipson & Jordan B. Pollack, 2000. "Automatic design and manufacture of robotic lifeforms," Nature, Nature, vol. 406(6799), pages 974-978, August.
  • Handle: RePEc:nat:nature:v:406:y:2000:i:6799:d:10.1038_35023115
    DOI: 10.1038/35023115
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35023115
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35023115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Zhao & Haobo Luo & Yuxiao Tu & Chongxi Meng & Tin Lun Lam, 2024. "Snail-inspired robotic swarms: a hybrid connector drives collective adaptation in unstructured outdoor environments," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Agrim Gupta & Silvio Savarese & Surya Ganguli & Li Fei-Fei, 2021. "Embodied intelligence via learning and evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Miguel Duarte & Vasco Costa & Jorge Gomes & Tiago Rodrigues & Fernando Silva & Sancho Moura Oliveira & Anders Lyhne Christensen, 2016. "Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-25, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:406:y:2000:i:6799:d:10.1038_35023115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.