Author
Listed:
- S.-T. Yau
(Center for Microgravity and Materials Research, and)
- Peter G. Vekilov
(Center for Microgravity and Materials Research, and
University of Alabama in Huntsville)
Abstract
First-order phase transitions of matter, such as condensation and crystallization, proceed through the formation and subsequent growth of ‘critical nuclei’ of the new phase. The thermodynamics and kinetics of the formation of these critical nuclei depend on their structure, which is often assumed to be a compact, three-dimensional arrangement of the constituent molecules or atoms5,6. Recent molecular dynamics simulations have predicted compact nucleus structures for matter made up of building blocks with a spherical interaction field7,8, whereas strongly anisotropic, dipolar molecules may form nuclei consisting of single chains of molecules9. Here we show, using direct atomic force microscopy observations, that the near-critical-size clusters formed during the crystallization of apoferritin, a quasi-spherical protein, and which are representative of the critical nucleus of this system, consist of planar arrays of one or two monomolecular layers that contain 5–10 rods of up to 7 molecules each. We find that these clusters contain between 20 and 50 molecules each, and that the arrangement of the constituent molecules is identical to that found in apoferritin crystals. We anticipate that similarly unexpected critical nucleus structures may be quite common, particularly with anisotropic molecules, suggesting that advanced nucleation theories should treat the critical nucleus structure as a variable.
Suggested Citation
S.-T. Yau & Peter G. Vekilov, 2000.
"Quasi-planar nucleus structure in apoferritin crystallization,"
Nature, Nature, vol. 406(6795), pages 494-497, August.
Handle:
RePEc:nat:nature:v:406:y:2000:i:6795:d:10.1038_35020035
DOI: 10.1038/35020035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:406:y:2000:i:6795:d:10.1038_35020035. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.