Author
Listed:
- Carol E. Diebel
(Experimental Biology Research Group, School of Biological Sciences, University of Auckland
Auckland Museum)
- Roger Proksch
(Magnetics Laboratory, Digital Instruments
Asylum Research)
- Colin R. Green
(University of Auckland, Private Bag 92019)
- Peter Neilson
(Magnetics Laboratory, Digital Instruments)
- Michael M. Walker
(Experimental Biology Research Group, School of Biological Sciences, University of Auckland)
Abstract
The key behavioural, physiological and anatomical components of a magnetite-based magnetic sense have been demonstrated in rainbow trout (Oncorhynchus mykiss )1. Candidate receptor cells located within a discrete sub-layer of the olfactory lamellae contained iron-rich crystals that were similar in size and shape to magnetite crystals extracted from salmon1,2. Here we show that these crystals, which mapped to individual receptors using confocal and atomic force microscopy, are magnetic, as they are uniquely associated with dipoles detected by magnetic force microscopy. Analysis of their magnetic properties identifies the crystals as single-domain magnetite. In addition, three-dimensional reconstruction of the candidate receptors using confocal and atomic force microscopy imaging confirm that several magnetic crystals are arranged in a chain of about 1 µm within the receptor, and that the receptor is a multi-lobed single cell. These results are consistent with a magnetite-based detection mechanism2,3, as 1-µm chains of single-domain magnetite crystals are highly suitable for the behavioural and physiological responses to magnetic intensity previously reported in the trout.
Suggested Citation
Carol E. Diebel & Roger Proksch & Colin R. Green & Peter Neilson & Michael M. Walker, 2000.
"Magnetite defines a vertebrate magnetoreceptor,"
Nature, Nature, vol. 406(6793), pages 299-302, July.
Handle:
RePEc:nat:nature:v:406:y:2000:i:6793:d:10.1038_35018561
DOI: 10.1038/35018561
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:406:y:2000:i:6793:d:10.1038_35018561. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.