IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v405y2000i6785d10.1038_35013039.html
   My bibliography  Save this article

Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering

Author

Listed:
  • John E. Vidale

    (University of California
    University of California)

  • Doug A. Dodge

    (Lawrence Livermore National Laboratory Geophysics Division)

  • Paul S. Earle

    (University of California)

Abstract

The finding that the Earth's inner core might be rotating faster than the mantle1 has important implications for our understanding of core processes, including the generation of the Earth's magnetic field2,3. But the reported signal is subtle—a change of about 0.01 s per year in the separation of two seismic waves with differing paths through the core. Subsequent studies of such data have generally supported the conclusion that differential rotation exists4,5,6, but the difficulty of accurately locating historic earthquakes7 and possible biases induced by strong lateral variations in structure near the core–mantle boundary8 have raised doubt regarding the proposed inner-core motion9. Also, a study of free oscillations10 constrained the motion to be relatively small compared to previous estimates and it has been proposed that the interaction of inner-core boundary topography and mantle heterogeneity might lock the inner core to the mantle11. The recent detection of seismic waves scattered in the inner core12 suggests a simple test of inner-core motion. Here we compare scattered waves recorded in Montana, USA, from two closely located nuclear tests at Novaya Zemlya, USSR, in 1971 and 1974. The data show small but coherent changes in scattering which point toward an inner-core differential rotation rate of 0.15° per year—consistent with constraints imposed by the free-oscillation data10.

Suggested Citation

  • John E. Vidale & Doug A. Dodge & Paul S. Earle, 2000. "Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering," Nature, Nature, vol. 405(6785), pages 445-448, May.
  • Handle: RePEc:nat:nature:v:405:y:2000:i:6785:d:10.1038_35013039
    DOI: 10.1038/35013039
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35013039
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35013039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:405:y:2000:i:6785:d:10.1038_35013039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.