IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6780d10.1038_35009144.html
   My bibliography  Save this article

Single-molecule analysis of DNA uncoiling by a type II topoisomerase

Author

Listed:
  • Terence R. Strick

    (Laboratoire de Physique Statistique de l'Ecole Normale Superieure, UMR 8550 CNRS, Universities of Paris VI and Paris VII)

  • Vincent Croquette

    (Laboratoire de Physique Statistique de l'Ecole Normale Superieure, UMR 8550 CNRS, Universities of Paris VI and Paris VII)

  • David Bensimon

    (Laboratoire de Physique Statistique de l'Ecole Normale Superieure, UMR 8550 CNRS, Universities of Paris VI and Paris VII)

Abstract

Type II DNA topoisomerases are ubiquitous ATP-dependent enzymes capable of transporting a DNA through a transient double-strand break in a second DNA segment1. This enables them to untangle DNA2,3,4,5,6 and relax the interwound supercoils (plectonemes) that arise in twisted DNA7. In vivo, they are responsible for untangling replicated chromosomes and their absence at mitosis or meiosis ultimately causes cell death8,9. Here we describe a micromanipulation experiment in which we follow in real time a single Drosophila melanogaster topoisomerase II acting on a linear DNA molecule which is mechanically stretched and supercoiled10,11,12,13. By monitoring the DNA's extension in the presence of ATP, we directly observe the relaxation of two supercoils during a single catalytic turnover. By controlling the force pulling on the molecule, we determine the variation of the reaction rate with the applied stress. Finally, in the absence of ATP, we observe the clamping of a DNA crossover by a single topoisomerase on at least two different timescales (configurations). These results show that single molecule experiments are a powerful new tool for the study of topoisomerases.

Suggested Citation

  • Terence R. Strick & Vincent Croquette & David Bensimon, 2000. "Single-molecule analysis of DNA uncoiling by a type II topoisomerase," Nature, Nature, vol. 404(6780), pages 901-904, April.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6780:d:10.1038_35009144
    DOI: 10.1038/35009144
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35009144
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35009144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian L Morgan & Omar A Saleh, 2021. "Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-18, December.
    2. Jaeyoon Lee & Meiling Wu & James T. Inman & Gundeep Singh & Seong ha Park & Joyce H. Lee & Robert M. Fulbright & Yifeng Hong & Joshua Jeong & James M. Berger & Michelle D. Wang, 2023. "Chromatinization modulates topoisomerase II processivity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Pascal Carrivain & Maria Barbi & Jean-Marc Victor, 2014. "In Silico Single-Molecule Manipulation of DNA with Rigid Body Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6780:d:10.1038_35009144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.