IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6770d10.1038_35001108.html
   My bibliography  Save this article

Localization of apical epithelial determinants by the basolateral PDZ protein Scribble

Author

Listed:
  • David Bilder

    (Department of Genetics)

  • Norbert Perrimon

    (Department of Genetics
    Howard Hughes Medical Institute, Harvard Medical School)

Abstract

The generation of membrane domains with distinct protein constituents is a hallmark of cell polarization. In epithelia, segregation of membrane proteins into apical and basolateral compartments is critical for cell morphology, tissue physiology and cell signalling. Drosophila proteins that confer apical membrane identity have been found1,2, but the mechanisms that restrict these determinants to the apical cell surface are unknown. Here we show that a laterally localized protein is required for the apical confinement of polarity determinants. Mutations in Drosophila scribble (scrib), which encodes a multi-PDZ (PSD-95, Discs-large and ZO-1) and leucine-rich-repeat protein, cause aberrant cell shapes and loss of the monolayer organization of embryonic epithelia. Scrib is localized to the epithelial septate junction, the analogue of the vertebrate tight junction3, at the boundary of the apical and basolateral cell surfaces. Loss of scrib function results in the misdistribution of apical proteins and adherens junctions to the basolateral cell surface, but basolateral protein localization remains intact. These phenotypes can be accounted for by mislocalization of the apical determinant Crumbs. Our results show that the lateral domain of epithelia, particularly the septate junction, functions in restricting apical membrane identity and correctly placing adherens junctions.

Suggested Citation

  • David Bilder & Norbert Perrimon, 2000. "Localization of apical epithelial determinants by the basolateral PDZ protein Scribble," Nature, Nature, vol. 403(6770), pages 676-680, February.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6770:d:10.1038_35001108
    DOI: 10.1038/35001108
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35001108
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35001108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana Willim & Daniel Woike & Daniel Greene & Sarada Das & Kevin Pfeifer & Weimin Yuan & Anika Lindsey & Omar Itani & Amber L. Böhme & Debora Tibbe & Hans-Hinrich Hönck & Fatemeh Hassani Nia & Michael , 2024. "Variants in LRRC7 lead to intellectual disability, autism, aggression and abnormal eating behaviors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6770:d:10.1038_35001108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.