IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6769d10.1038_35000508.html
   My bibliography  Save this article

Quantum mirages formed by coherent projection of electronic structure

Author

Listed:
  • H. C. Manoharan

    (Almaden Research Center)

  • C. P. Lutz

    (Almaden Research Center)

  • D. M. Eigler

    (Almaden Research Center)

Abstract

Image projection relies on classical wave mechanics and the use of natural or engineered structures such as lenses or resonant cavities. Well-known examples include the bending of light to create mirages in the atmosphere, and the focusing of sound by whispering galleries. However, the observation of analogous phenomena in condensed matter systems is a more recent development1, facilitated by advances in nanofabrication. Here we report the projection of the electronic structure surrounding a magnetic Co atom to a remote location on the surface of a Cu crystal; electron partial waves scattered from the real Co atom are coherently refocused to form a spectral image or ‘quantum mirage’. The focusing device is an elliptical quantum corral2,3, assembled on the Cu surface. The corral acts as a quantum mechanical resonator, while the two-dimensional Cu surface-state electrons form the projection medium. When placed on the surface, Co atoms display a distinctive spectroscopic signature, known as the many-particle Kondo resonance4,5,6, which arises from their magnetic moment. By positioning a Co atom at one focus of the ellipse, we detect a strong Kondo signature not only at the atom, but also at the empty focus. This behaviour contrasts with the usual spatially-decreasing response of an electron gas to a localized perturbation7.

Suggested Citation

  • H. C. Manoharan & C. P. Lutz & D. M. Eigler, 2000. "Quantum mirages formed by coherent projection of electronic structure," Nature, Nature, vol. 403(6769), pages 512-515, February.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6769:d:10.1038_35000508
    DOI: 10.1038/35000508
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35000508
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35000508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinnan Peng & Harshitra Mahalingam & Shaoqiang Dong & Pingo Mutombo & Jie Su & Mykola Telychko & Shaotang Song & Pin Lyu & Pei Wen Ng & Jishan Wu & Pavel Jelínek & Chunyan Chi & Aleksandr Rodin & Jion, 2021. "Visualizing designer quantum states in stable macrocycle quantum corrals," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Pieter J. Keenan & Rebecca M. Purkiss & Tillmann Klamroth & Peter A. Sloan & Kristina R. Rusimova, 2024. "Measuring competing outcomes of a single-molecule reaction reveals classical Arrhenius chemical kinetics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6769:d:10.1038_35000508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.