IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6765d10.1038_47507.html
   My bibliography  Save this article

Calcium signalling in the guidance of nerve growth by netrin-1

Author

Listed:
  • Kyonsoo Hong

    (University of California at San Diego)

  • Makoto Nishiyama

    (University of California at San Diego)

  • John Henley

    (University of California at San Diego)

  • Marc Tessier-Lavigne

    (Howard Hughes Medical Institute, University of California at San Francisco)

  • Mu-ming Poo

    (University of California at San Diego)

Abstract

Pathfinding by growing axons in the developing nervous system is guided by diffusible or bound factors that attract or repel the axonal growth cone1,2. The cytoplasmic signalling mechanisms that trigger the responses of the growth cone to guidance factors are mostly unknown3. Previous studies have shown that the level and temporal patterns of cytoplasmic Ca2+ can regulate the rate of growth-cone extension in vitro4,5,6,7,8 and in vivo9. Here we report that Ca2+ also mediates the turning behaviour of the growth cones of cultured Xenopus neurons that are induced by an extracellular gradient of netrin-1, an established diffusible guidance factor in vivo1,10. The netrin-1-induced turning response depends on Ca2+ influx through plasma membrane Ca2+ channels, as well as Ca2+-induced Ca2+ release from cytoplasmic stores11. Reduction of Ca2+ signals by blocking either of these two Ca2+ sources converted the netrin-1-induced response from attraction to repulsion. Activation of Ca2+-induced Ca2+ release from internal stores with a gradient of ryanodine in the absence of netrin-1 was sufficient to trigger either attractive or repulsive responses, depending on the ryanodine concentration used. These results support the model that cytoplasmic Ca2+ signals mediate growth-cone guidance by netrin-1, and different patterns of Ca2+ elevation trigger attractive and repulsive turning responses.

Suggested Citation

  • Kyonsoo Hong & Makoto Nishiyama & John Henley & Marc Tessier-Lavigne & Mu-ming Poo, 2000. "Calcium signalling in the guidance of nerve growth by netrin-1," Nature, Nature, vol. 403(6765), pages 93-98, January.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6765:d:10.1038_47507
    DOI: 10.1038/47507
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/47507
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/47507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Baudet & Yvrick Zagar & Fiona Roche & Claudia Gomez-Bravo & Sandrine Couvet & Johann BĂ©cret & Morgane Belle & Juliette Vougny & Sinthuya Uthayasuthan & Oriol Ros & Xavier Nicol, 2023. "Subcellular second messenger networks drive distinct repellent-induced axon behaviors," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6765:d:10.1038_47507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.