Author
Listed:
- Mathieu Benoit
(CNRS, UMR 6538, IUEM, Place N. Copernic)
- Georges Ceuleneer
(Centre National de la Recherche Scientifique, UMR 5562 & 5563, Observatoire Midi-Pyrénées)
- Mireille Polvé
(Centre National de la Recherche Scientifique, UMR 5562 & 5563, Observatoire Midi-Pyrénées)
Abstract
Most gabbroic cumulates found at ocean spreading centres are thought to have been generated by the fractional crystallization of melts with the composition of mid-ocean ridge basalt (MORB)1. There are exceptions, however, including some cumulates which appear to have come from melts that contain more silica than MORB and are much more depleted in the incompatible elements (those elements that do not readily substitute into the main mineral phases)2. These unusual rocks bear witness to relatively deep petrological processes that are not accessible through the study of melts erupted on the sea floor, and their origin is still debated. Fortunately, the same lithologies can be studied in detail in ophiolites (sections of oceanic crust accreted to a continent). In a fossil mantle diapir of the Oman ophiolite3,4, we have observed the same dichotomy between a suite of ‘normal’, MORB-type, cumulates (‘N-cumulates’) and a suite of cumulates issued from silica-enriched but incompatible-element-depleted melts (‘D-cumulates’). While the N-cumulates crystallized inside the diapir, the D-cumulates occur essentially as intrusions surrounding the diapir. The combination of silica enrichment, extreme depletion in incompatible elements, and seawater isotopic signature indicates that the D-cumulates were formed by the remelting at low pressure of hydrated residual peridotites left after MORB extraction at the ridge axis. The distribution of the D-cumulates relative to the N-cumulates suggests that such depleted melts are produced episodically at ridge axes when the lithospheric mantle is reheated by a new diapiric pulse.
Suggested Citation
Mathieu Benoit & Georges Ceuleneer & Mireille Polvé, 1999.
"The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs,"
Nature, Nature, vol. 402(6761), pages 514-518, December.
Handle:
RePEc:nat:nature:v:402:y:1999:i:6761:d:10.1038_990073
DOI: 10.1038/990073
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6761:d:10.1038_990073. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.