Author
Abstract
Solar energy is being used for power generation, but also attracts increasing interest as a renewable energy source for the photocatalytic production of useful chemicals. Simple systems based on vesicles with transmembrane redox mediators have been used to transform photon energy into long-lived, membrane-separated photoredox products1,2,3,4,5,6. However, these systems are not suitable for high-throughput applications because the transmembrane electron carriers are oxidized inside the vesicle into charged species that are no longer able to readily traverse the membrane bilayer. This leads to continuous trapping of these carriers during photolysis and, ultimately, to the termination of the redox reaction due to accumulation of the available carriers within the vesicle interior. Living cells circumvent this problem by using quinones to simultaneously transport electrons and protons, thus allowing the carrier to remain neutral in its reduced and oxidized states and so retain the ability to undergo transmembrane diffusion throughout the redox cycle. But the incorporation of quinones into artificial systems is not practical because of their susceptibility to oxidative degradation and slow transmembrane diffusion7. Here we describe an alternative mechanism for rapid electroneutral charge transport across vesicle membranes: we use pyrylium cations as the electron carrier, which undergo reversible ring-opening hydrolysis to form neutral diketones after deposition of the electron inside the vesicle. As the pyrylium cations are also the primary acceptors for the photoproduced electrons, our approach greatly simplifies the design of vesicle-based photocatalytic devices.
Suggested Citation
Rafail F. Khairutdinov & James K. Hurst, 1999.
"Cyclic transmembrane charge transport by pyrylium ions in a vesicle-based photocatalytic system,"
Nature, Nature, vol. 402(6761), pages 509-511, December.
Handle:
RePEc:nat:nature:v:402:y:1999:i:6761:d:10.1038_990064
DOI: 10.1038/990064
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6761:d:10.1038_990064. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.