IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6761d10.1038_990058.html
   My bibliography  Save this article

Resonant intermolecular transfer of vibrational energy in liquid water

Author

Listed:
  • Sander Woutersen

    (FOM-Institute for Atomic and Molecular Physics)

  • Huib J. Bakker

    (FOM-Institute for Atomic and Molecular Physics)

Abstract

Many biological, chemical and physical processes involve the transfer of energy. In the case of electronic excitations, transfer between molecules is rapid, whereas for vibrations in the condensed phase, resonant energy transfer is an unlikely process because the typical timescale of vibrational relaxation (a few picoseconds) is much shorter than that of resonant intermolecular vibrational energy transfer1,2. For the OH-stretch vibration in liquid water, which is of particular importance due to its coupling to the hydrogen bond, extensive investigations have shown that vibrational relaxation takes place with a time constant of 740 ± 25 femtoseconds (ref. 7). So for resonant intermolecular energy transfer to occur in liquid water, the interaction between the OH-stretch modes of different water molecules needs to be extremely strong. Here we report time-resolved pump-probe laser spectroscopy measurements that reveal the occurrence of fast resonant intermolecular transfer of OH-stretch excitations over many water molecules before the excitation energy is dissipated. We find that the transfer process is mediated by dipole–dipole interactions (the Förster transfer mechanism9) and additional mechanisms that are possibly based on intermolecular anharmonic interactions involving hydrogen bonds. Our findings suggest that liquid water may play an important role in transporting vibrational energy between OH groups located on either different biomolecules or along extended biological structures. OH groups in a hydrophobic environment should accordingly be able to remain in a vibrationally excited state longer than OH groups in a hydrophilic environment.

Suggested Citation

  • Sander Woutersen & Huib J. Bakker, 1999. "Resonant intermolecular transfer of vibrational energy in liquid water," Nature, Nature, vol. 402(6761), pages 507-509, December.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6761:d:10.1038_990058
    DOI: 10.1038/990058
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/990058
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/990058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iain H Moal & Paul A Bates, 2012. "Kinetic Rate Constant Prediction Supports the Conformational Selection Mechanism of Protein Binding," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6761:d:10.1038_990058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.