IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6760d10.1038_46536.html
   My bibliography  Save this article

The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes

Author

Listed:
  • Yin-Long Qiu

    (Institute of Systematic Botany, University of Zurich)

  • Jungho Lee

    (Institute of Systematic Botany, University of Zurich)

  • Fabiana Bernasconi-Quadroni

    (Institute of Systematic Botany, University of Zurich)

  • Douglas E. Soltis

    (School of Biological Sciences, Washington State University)

  • Pamela S. Soltis

    (School of Biological Sciences, Washington State University)

  • Michael Zanis

    (School of Biological Sciences, Washington State University)

  • Elizabeth A. Zimmer

    (Laboratory of Molecular Systematics, Smithsonian Institution)

  • Zhiduan Chen

    (Institute of Systematic Botany, University of Zurich
    Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences)

  • Vincent Savolainen

    (Jodrell Laboratory Royal Botanic Gardens, Kew)

  • Mark W. Chase

    (Jodrell Laboratory Royal Botanic Gardens, Kew)

Abstract

Angiosperms have dominated the Earth's vegetation since the mid-Cretaceous (90 million years ago)1, providing much of our food, fibre, medicine and timber, yet their origin and early evolution have remained enigmatic for over a century2,3,4,5,6,7,8. One part of the enigma lies in the difficulty of identifying the earliest angiosperms; the other involves the uncertainty regarding the sister group of angiosperms among extant and fossil gymnosperms. Here we report a phylogenetic analysis of DNA sequences of five mitochondrial, plastid and nuclear genes (total aligned length 8,733 base pairs), from all basal angiosperm and gymnosperm lineages (105 species, 103 genera and 63 families). Our study demonstrates that Amborella, Nymphaeales and Illiciales-Trimeniaceae-Austrobaileya represent the first stage of angiosperm evolution, with Amborella being sister to all other angiosperms. We also show that Gnetales are related to the conifers and are not sister to the angiosperms, thus refuting the Anthophyte Hypothesis1. These results have far-reaching implications for our understanding of diversification, adaptation, genome evolution and development of the angiosperms.

Suggested Citation

  • Yin-Long Qiu & Jungho Lee & Fabiana Bernasconi-Quadroni & Douglas E. Soltis & Pamela S. Soltis & Michael Zanis & Elizabeth A. Zimmer & Zhiduan Chen & Vincent Savolainen & Mark W. Chase, 1999. "The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes," Nature, Nature, vol. 402(6760), pages 404-407, November.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6760:d:10.1038_46536
    DOI: 10.1038/46536
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/46536
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/46536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Guo & Dongming Fang & Sunil Kumar Sahu & Shuai Yang & Xuanmin Guang & Ryan Folk & Stephen A. Smith & Andre S. Chanderbali & Sisi Chen & Min Liu & Ting Yang & Shouzhou Zhang & Xin Liu & Xun Xu & P, 2021. "Chloranthus genome provides insights into the early diversification of angiosperms," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Jianxiang Ma & Pengchuan Sun & Dandan Wang & Zhenyue Wang & Jiao Yang & Ying Li & Wenjie Mu & Renping Xu & Ying Wu & Congcong Dong & Nawal Shrestha & Jianquan Liu & Yongzhi Yang, 2021. "The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6760:d:10.1038_46536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.