IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v401y1999i6748d10.1038_43474.html
   My bibliography  Save this article

NF-κB is a target of AKT in anti-apoptotic PDGF signalling

Author

Listed:
  • Julia A. Romashkova

    (Thurston Arthritis Research Center, and Center for Inflammatory Disorders, University of North Carolina at Chapel Hill)

  • Sergei S. Makarov

    (Thurston Arthritis Research Center, and Center for Inflammatory Disorders, University of North Carolina at Chapel Hill)

Abstract

The mechanisms of cell proliferation and transformation are intrinsically linked to the process of apoptosis: the default of proliferating cells is to die unless specific survival signals are provided1,2. Platelet-derived growth factor (PDGF) is a principal survival factor that inhibits apoptosis and promotes proliferation1, but the mechanisms mediating its anti-apoptotic properties are not completely understood. Here we show that the transcription factor NF-κB3,4,5 is important in PDGF signalling. NF-κB transmits two signals: one is required for the induction of proto-oncogene c-myc and proliferation, and the second, an anti-apoptotic signal, counterbalances c-Myc cytotoxicity. We have traced a putative pathway whereby PDGF activates NF-κB through Ras and phospatidylinositol-3-kinase (PI(3)K) to the PKB/Akt protein kinase and the IκB kinase (IKK); NF-κB thus appears to be a target of the anti-apoptotic Ras/PI(3)K/Akt pathway6,7. We show that, upon PDGF stimulation, Akt transiently associates in vivo with IKK and induces IKK activation. These findings establish a role for NF-κB in growth factor signalling and define an anti-apoptotic Ras/PI(3)K/Akt/IKK/NF-κB pathway, thus linking anti-apoptotic signalling with transcription machinery.

Suggested Citation

  • Julia A. Romashkova & Sergei S. Makarov, 1999. "NF-κB is a target of AKT in anti-apoptotic PDGF signalling," Nature, Nature, vol. 401(6748), pages 86-90, September.
  • Handle: RePEc:nat:nature:v:401:y:1999:i:6748:d:10.1038_43474
    DOI: 10.1038/43474
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/43474
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/43474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohith Palli & Mukta G Palshikar & Juilee Thakar, 2019. "Executable pathway analysis using ensemble discrete-state modeling for large-scale data," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:401:y:1999:i:6748:d:10.1038_43474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.