IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6732d10.1038_20127.html
   My bibliography  Save this article

Efficient fault-tolerant quantum computing

Author

Listed:
  • Andrew M. Steane

    (Clarendon Laboratory)

Abstract

Quantum computing1—the processing of information according to the fundamental laws of physics—offers a means to solve efficiently a small but significant set of classically intractable problems. Quantum computers are based on the controlled manipulation of entangled quantum states, which are extremely sensitive to noise and imprecision; active correction of errors must therefore be implemented without causing loss of coherence. Quantum error-correction theory2,3,4,5,6,7,8,9 has made great progress in this regard, by predicting error-correcting ‘codeword’ quantum states. But the coding is inefficient and requires many quantum bits10,11,12, which results in physically unwieldy fault-tolerant quantum circuits10,11,12,13,14,15,16,17,18. Here I report a general technique for circumventing the trade-off between the achieved noise tolerance and the scale-up in computer size that is required to realize the error correction. I adapt the recovery operation (the process by which noise is suppressed through error detection and correction) to simultaneously correct errors and perform a useful measurement that drives the computation. The result is that a quantum computer need be only an order of magnitude larger than the logic device contained within it. For example, the physical scale-up factor10,11 required to factorize a thousand-digit number is reduced from 1,500 to 22, while preserving the original tolerated gate error rate (10−5) and memory noise per bit (10−7). The difficulty of realizing a useful quantum computer is therefore significantly reduced.

Suggested Citation

  • Andrew M. Steane, 1999. "Efficient fault-tolerant quantum computing," Nature, Nature, vol. 399(6732), pages 124-126, May.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6732:d:10.1038_20127
    DOI: 10.1038/20127
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/20127
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/20127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6732:d:10.1038_20127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.