IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6731d10.1038_19992.html
   My bibliography  Save this article

Regulation of alternative splicing by RNA editing

Author

Listed:
  • Susan M. Rueter

    (Vanderbilt University School of Medicine)

  • T. Renee Dawson

    (Vanderbilt University School of Medicine)

  • Ronald B. Emeson

    (Vanderbilt University School of Medicine)

Abstract

The enzyme ADAR2 is a double-stranded RNA-specific adenosine deaminase which is involved in the editing of mammalian messenger RNAs by the site-specific conversion of adenosine to inosine1,2,3. Here we identify several rat ADAR2 mRNAs produced as a result of two distinct alternative splicing events. One such splicing event uses a proximal 3′ acceptor site, adding 47 nucleotides to the ADAR2 coding region, changing the predicted reading frame of the mature ADAR2 transcript. Nucleotide-sequence analysis of ADAR2 genomic DNA revealed the presence of adenosine–adenosine (AA) and adenosine–guanosine (AG) dinucleotides at these proximal and distal alternative 3′ acceptor sites, respectively. Use of the proximal 3′ acceptor depends upon the ability of ADAR2 to edit its own pre-mRNA, converting the intronic AA to an adenosine–inosine (Al) dinucleotide which effectively mimics the highly conserved AG sequence normally found at 3′ splice junctions. Our observations indicate that RNA editing can serve as a mechanism for regulating alternative splicing and they suggest a novel strategy by which ADAR2 can modulate its own expression.

Suggested Citation

  • Susan M. Rueter & T. Renee Dawson & Ronald B. Emeson, 1999. "Regulation of alternative splicing by RNA editing," Nature, Nature, vol. 399(6731), pages 75-80, May.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6731:d:10.1038_19992
    DOI: 10.1038/19992
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/19992
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/19992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Winston H. Cuddleston & Junhao Li & Xuanjia Fan & Alexey Kozenkov & Matthew Lalli & Shahrukh Khalique & Stella Dracheva & Eran A. Mukamel & Michael S. Breen, 2022. "Cellular and genetic drivers of RNA editing variation in the human brain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Yuta Noda & Shunpei Okada & Tsutomu Suzuki, 2022. "Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6731:d:10.1038_19992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.