IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v398y1999i6726d10.1038_18872.html
   My bibliography  Save this article

Absolute measures of the completeness of the fossil record

Author

Listed:
  • Mike Foote

    (University of Chicago)

  • J. John Sepkoski

    (University of Chicago)

Abstract

Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa1,2 and on hypothetical lineages implied by estimated evolutionary trees3,4,5. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval6,7, and determine the proportion of living families with some fossil record8,9,10. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

Suggested Citation

  • Mike Foote & J. John Sepkoski, 1999. "Absolute measures of the completeness of the fossil record," Nature, Nature, vol. 398(6726), pages 415-417, April.
  • Handle: RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18872
    DOI: 10.1038/18872
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/18872
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/18872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph T. Flannery-Sutherland & Cameron D. Crossan & Corinne E. Myers & Austin J. W. Hendy & Neil H. Landman & James D. Witts, 2024. "Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.