IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v398y1999i6726d10.1038_18855.html
   My bibliography  Save this article

Electrical conduction through DNA molecules

Author

Listed:
  • Hans-Werner Fink

    (Institute of Physics, University of Basel)

  • Christian Schönenberger

    (Institute of Physics, University of Basel)

Abstract

The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix1. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites2,3. But the experimental results remain contradictory, as do theoretical predictions4. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.

Suggested Citation

  • Hans-Werner Fink & Christian Schönenberger, 1999. "Electrical conduction through DNA molecules," Nature, Nature, vol. 398(6726), pages 407-410, April.
  • Handle: RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18855
    DOI: 10.1038/18855
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/18855
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/18855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adnan Y Rojeab, 2017. "Magnetic Properties Govern the Processes of DNA Replication and the Shortening of the Telomere," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 8(4), pages 100-105, August.
    2. Korshunova, A.N. & Lakhno, V.D., 2024. "Internal dynamics of a polaron uniformly moving along a molecular chain in a constant electric field," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Bagci, V.M.K. & Krokhin, A.A., 2007. "Metal–insulator transition in DNA molecules induced by long-range correlations in the sequence of nucleotides," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 104-111.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:398:y:1999:i:6726:d:10.1038_18855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.