IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v398y1999i6723d10.1038_18202.html
   My bibliography  Save this article

The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism

Author

Listed:
  • J. Huw Davies

    (The University of Liverpool)

Abstract

The presence of magmatism and intermediate-depth (70–300 km deep) seismicity at subduction zones is at first sight surprising. Magmatism is unexpected because the subduction of cool oceanic lithosphere makes these regions the coldest in the mantle. The current model for subduction-zone magmatism is that water released from the subducting slab enters the relatively warm mantle wedge, leading to a reduction in melting temperature and magmatism1,2,3,4. But there is a problem with this scheme because it is thought that water cannot leave the slab by porous flow to enter the wedge. The occurrence of intermediate-depth earthquakes is surprising because of the inhibitory effect of the very high frictional stress on faults expected from the high pressure at these depths. One proposal put forward to explain intermediate-depth seismicity is that high pore-pressure might facilitate faulting by decreasing the friction5,6,7. The hypothesis presented here is that non-percolating water provides the high pore-pressure, that the consequent faulting temporarily interconnects the water pores and, when a sufficient vertical height of water is interconnected, a hydrofracture is produced which transports the water out into the mantle wedge, thereby generating subduction-zone magmatism.

Suggested Citation

  • J. Huw Davies, 1999. "The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism," Nature, Nature, vol. 398(6723), pages 142-145, March.
  • Handle: RePEc:nat:nature:v:398:y:1999:i:6723:d:10.1038_18202
    DOI: 10.1038/18202
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/18202
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/18202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafver, Andreas & Jettestuen, Espen & Feder, Jens & Meakin, Paul & Malthe-Sørenssen, Anders, 2014. "A node-splitting discrete element model for fluid–structure interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 61-79.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:398:y:1999:i:6723:d:10.1038_18202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.