IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6718d10.1038_17126.html
   My bibliography  Save this article

Coherence of gamma-band EEG activity as a basis for associative learning

Author

Listed:
  • Wolfgang H. R. Miltner

    (Institute of Psychology, Friedrich-Schiller-University)

  • Christoph Braun

    (Institute of Medical Psychology and Behavioral Neuroscience, Eberhard-Kals-University)

  • Matthias Arnold

    (Institute of Medical Statistics, Informatics, and Documentation, Friedrich-Schiller-University)

  • Herbert Witte

    (Institute of Medical Statistics, Informatics, and Documentation, Friedrich-Schiller-University)

  • Edward Taub

    (University of Alabama at Birmingham)

Abstract

Different regions of the brain must communicate with each other to provide the basis for the integration of sensory information, sensory-motor coordination and many other functions that are critical for learning, memory, information processing, perception and the behaviour of organisms. Hebb1 suggested that this is accomplished by the formation of assemblies of cells whose synaptic linkages are strengthened whenever the cells are activated or ‘ignited’ synchronously. Hebb's seminal concept has intrigued investigators since its formulation, but the technology to demonstrate its existence had been lacking until the past decade. Previous studies have shown that very fast electroencephalographic activity in the gamma band (20–70 Hz) increases during, and may be involved in, the formation of percepts and memory2,3,4,5,6, linguistic processing7, and other behavioural and preceptual functions8,9,10,11,12. We show here that increased gamma-band activity is also involved in associative learning. In addition, we find that another measure, gamma-band coherence, increases between regions of the brain that receive the two classes of stimuli involved in an associative-learning procedure in humans. An increase in coherence could fulfil the criteria required for the formation of hebbian cell assemblies1, binding together parts of the brain that must communicate with one another in order for associative learning to take place. In this way, coherence may be a signature for this and other types of learning.

Suggested Citation

  • Wolfgang H. R. Miltner & Christoph Braun & Matthias Arnold & Herbert Witte & Edward Taub, 1999. "Coherence of gamma-band EEG activity as a basis for associative learning," Nature, Nature, vol. 397(6718), pages 434-436, February.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6718:d:10.1038_17126
    DOI: 10.1038/17126
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/17126
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/17126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W Gordon Frankle & Raymond Y Cho & N Scott Mason & Chi-Min Chen & Michael Himes & Christopher Walker & David A Lewis & Chester A Mathis & Rajesh Narendran, 2012. "[11C]flumazenil Binding Is Increased in a Dose-Dependent Manner with Tiagabine-Induced Elevations in GABA Levels," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    2. Oscar J Avella Gonzalez & Karlijn I van Aerde & Huibert D Mansvelder & Jaap van Pelt & Arjen van Ooyen, 2014. "Inter-Network Interactions: Impact of Connections between Oscillatory Neuronal Networks on Oscillation Frequency and Pattern," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    3. Damien A Fair & Alexander L Cohen & Jonathan D Power & Nico U F Dosenbach & Jessica A Church & Francis M Miezin & Bradley L Schlaggar & Steven E Petersen, 2009. "Functional Brain Networks Develop from a “Local to Distributed” Organization," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6718:d:10.1038_17126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.