IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6717d10.1038_16922.html
   My bibliography  Save this article

Monocular deprivation induces homosynaptic long-term depression in visual cortex

Author

Listed:
  • Cynthia D. Rittenhouse

    (Howard Hughes Medical Institute
    Brown University)

  • Harel Z. Shouval

    (Brown University)

  • Michael A. Paradiso

    (Brown University)

  • Mark F. Bear

    (Howard Hughes Medical Institute
    Brown University)

Abstract

Brief monocular deprivation during early postnatal development can lead to a depression of synaptic transmission that renders visual cortical neurons unresponsive to subsequent visual stimulation through the deprived eye. The Bienenstock–Cooper–Munro (BCM) theory1 proposes that homosynaptic mechanisms of long-term depression (LTD) account for the deprivation effects2,3. Homosynaptic depression, by definition, occurs only at active synapses. Thus, in contrast to the commonly held view that the synaptic depression caused by monocular deprivation is simply a result of retinal inactivity, this theoretical framework indicates that the synaptic depression may actually be driven by the residual activity in the visually deprived retina4. Here we examine the validity of this idea by comparing the consequences of brief monocular deprivation by lid suture with those of monocular inactivation by intra-ocular treatment with tetrodotoxin. Lid suture leaves the retina spontaneously active, whereas tetrodotoxin eliminates all activity. In agreement with the BCM theory, our results show that monocular lid suture causes a significantly greater depression of deprived-eye responses in kitten visual cortex than does treatment with tetrodotoxin. These findings have important implications for mechanisms of experience-dependent plasticity in the neocortex.

Suggested Citation

  • Cynthia D. Rittenhouse & Harel Z. Shouval & Michael A. Paradiso & Mark F. Bear, 1999. "Monocular deprivation induces homosynaptic long-term depression in visual cortex," Nature, Nature, vol. 397(6717), pages 347-350, January.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6717:d:10.1038_16922
    DOI: 10.1038/16922
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/16922
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/16922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ikuko Takeda & Kohei Yoshihara & Dennis L. Cheung & Tomoko Kobayashi & Masakazu Agetsuma & Makoto Tsuda & Kei Eto & Schuichi Koizumi & Hiroaki Wake & Andrew J. Moorhouse & Junichi Nabekura, 2022. "Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yuhao Huang & Rina Zelmann & Peter Hadar & Jaquelin Dezha-Peralta & R. Mark Richardson & Ziv M. Williams & Sydney S. Cash & Corey J. Keller & Angelique C. Paulk, 2024. "Theta-burst direct electrical stimulation remodels human brain networks," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Yanyun Ren & Xiaobo Bu & Ming Wang & Yue Gong & Junjie Wang & Yuyang Yang & Guijun Li & Meng Zhang & Ye Zhou & Su-Ting Han, 2022. "Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6717:d:10.1038_16922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.