IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6715d10.1038_16462.html
   My bibliography  Save this article

Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina

Author

Listed:
  • Steven H. DeVries

    (University of Texas Houston Health Science Center)

  • Eric A. Schwartz

    (University of Chicago)

Abstract

Light produces a graded hyperpolarization in retinal photoreceptors1,2 that decreases their release of synaptic neurotransmitter3,4. Cone photoreceptors use glutamate5,6 as a neurotransmitter with which to communicate with two types of bipolar cell. Activation of metabotropic glutamate receptors in ‘On’ bipolar cells7,8 initiates a second-messenger cascade that can amplify small synaptic inputs from cones. In contrast, it is not known how the ionotropic glutamate receptors that are activated in ‘Off’ bipolar cells9,10 are optimized for transmitting small, graded signals. Here we show, by recording from a cone and a synaptically connected ‘Off’ bipolar cell in slices of retina from the ground squirrel, that transmission is mediated by glutamate receptors of the kainate-preferring subtype. In the dark, a cone releases sufficient neurotransmitter to desensitize most postsynaptic kainate receptors. The small postsynaptic current that persists (

Suggested Citation

  • Steven H. DeVries & Eric A. Schwartz, 1999. "Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina," Nature, Nature, vol. 397(6715), pages 157-160, January.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6715:d:10.1038_16462
    DOI: 10.1038/16462
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/16462
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/16462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chad P. Grabner & Daiki Futagi & Jun Shi & Vytas Bindokas & Katsunori Kitano & Eric A. Schwartz & Steven H. DeVries, 2023. "Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Andrew Jo & Sercan Deniz & Jian Xu & Robert M. Duvoisin & Steven H. DeVries & Yongling Zhu, 2023. "A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6715:d:10.1038_16462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.