IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6715d10.1038_16420.html
   My bibliography  Save this article

Lateral drag of spin coherence in gallium arsenide

Author

Listed:
  • J. M. Kikkawa

    (University of California)

  • D. D. Awschalom

    (University of California)

Abstract

The importance of spin-transport phenomena in condensed-matter physics has increased over the past decade with the advent of metallic giant-magnetoresistive systems and spin-valve transistors1. An extension of such phenomena to semiconductors should create possibilities for seamless integration of ‘spin electronics’ with existing solid-state devices, and may someday enable quantum computing schemes using electronic spins as non-local mediators of coherent nuclear spin interactions2. But to realize such goals, spin transport must be effected without destroying the relevant spin information. Here we report time-resolved optical studies of non-local Faraday rotation in n-type bulk gallium arsenide, which show macroscopic lateral transport of coherently precessing electronic spins over distances exceeding 100 micrometres. The ability to drag these spin packets by their negative charge, without a substantial increase in spin decoherence, is a consequence of the rather weak entanglement of spin coherence with orbital motion in this system3.

Suggested Citation

  • J. M. Kikkawa & D. D. Awschalom, 1999. "Lateral drag of spin coherence in gallium arsenide," Nature, Nature, vol. 397(6715), pages 139-141, January.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6715:d:10.1038_16420
    DOI: 10.1038/16420
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/16420
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/16420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul L. J. Helgers & James A. H. Stotz & Haruki Sanada & Yoji Kunihashi & Klaus Biermann & Paulo V. Santos, 2022. "Flying electron spin control gates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhiwen Zhou & E. A. Szwed & D. J. Choksy & L. H. Fowler-Gerace & L. V. Butov, 2024. "Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6715:d:10.1038_16420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.