IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v396y1998i6711d10.1038_25133.html
   My bibliography  Save this article

Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion

Author

Listed:
  • Christopher Peters

    (Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft)

  • Andreas Mayer

    (Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft)

Abstract

The basic reaction mechanisms for membrane fusion in the trafficking of intracellular membranes and in exocytosis are probably identical5. But in contrast to regulated exocytosis, intracellular fusion reactions are referred to as ‘constitutive’ as no final Ca2+-dependent triggering step has been observed. Although transport from the endoplasmic reticulum to the Golgi apparatus in the cell depends on Ca2+ (ref. 6), as does endosome fusion7 and assembly of the nuclear envelope8, it is unclear whether Ca2+ triggers these events. Membrane fusion involves several subreactions: priming, tethering and docking. Proteins that are needed for fusion include p115, SNAPs, NSF, SNAREs and small GTPases, which operate in these early reactions1,2,3 but the machinery that catalyses the final mixing of biological membranes is still unknown. Here we show that Ca2+ is released from the vacuolar lumen following completion of the docking step. We have identified calmodulin as the putative Ca2+ sensor and as the first component required in the post-docking phase of vacuole fusion. Calmodulin binds tightly to vacuoles upon Ca2+ release. Unlike synaptotagmin or syncollin in exocytosis4, calmodulin does not act as a fusion clamp but actively promotes bilayer mixing. Hence, activation of SNAREs is not sufficient to drive bilayer mixing between physiological membranes. We propose that Ca2+ control of the latest phase of membrane fusion may be a conserved feature, relevant not only for exocytosis, but also for intracellular, ‘constitutive’ fusion reactions. However, the origin of the Ca2+ signal, its receptor and its mode of processing differ.

Suggested Citation

  • Christopher Peters & Andreas Mayer, 1998. "Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion," Nature, Nature, vol. 396(6711), pages 575-580, December.
  • Handle: RePEc:nat:nature:v:396:y:1998:i:6711:d:10.1038_25133
    DOI: 10.1038/25133
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/25133
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/25133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:396:y:1998:i:6711:d:10.1038_25133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.