IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v396y1998i6709d10.1038_24550.html
   My bibliography  Save this article

Hsp90 as a capacitor for morphological evolution

Author

Listed:
  • Suzanne L. Rutherford

    (Howard Hughes Medical Institute, University of Chicago
    University of California at Irvine)

  • Susan Lindquist

    (Howard Hughes Medical Institute, University of Chicago)

Abstract

The heat-shock protein Hsp90 supports diverse but specific signal transducers and lies at the interface of several developmental pathways. We report here that when Drosophila Hsp90 is mutant or pharmacologically impaired, phenotypic variation affecting nearly any adult structure is produced, with specific variants depending on the genetic background and occurring both in laboratory strains and in wild populations. Multiple, previously silent, genetic determinants produced these variants and, when enriched by selection, they rapidly became independent of the Hsp90 mutation. Therefore, widespread variation affecting morphogenic pathways exists in nature, but is usually silent; Hsp90 buffers this variation, allowing it to accumulate under neutral conditions. When Hsp90 buffering is compromised, for example by temperature, cryptic variants are expressed and selection can lead to the continued expression of these traits, even when Hsp90 function is restored. This provides a plausible mechanism for promoting evolutionary change in otherwise entrenched developmental processes.

Suggested Citation

  • Suzanne L. Rutherford & Susan Lindquist, 1998. "Hsp90 as a capacitor for morphological evolution," Nature, Nature, vol. 396(6709), pages 336-342, November.
  • Handle: RePEc:nat:nature:v:396:y:1998:i:6709:d:10.1038_24550
    DOI: 10.1038/24550
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/24550
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/24550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Blanco-Obregon & K. El Marzkioui & F. Brutscher & V. Kapoor & L. Valzania & D. S. Andersen & J. Colombani & S. Narasimha & D. McCusker & P. LĂ©opold & L. Boulan, 2022. "A Dilp8-dependent time window ensures tissue size adjustment in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sergey Vakulenko & Dmitry Grigoriev, 2021. "Deep Gene Networks and Response to Stress," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    3. Zeina Shreif & Vipul Periwal, 2014. "A Network Characteristic That Correlates Environmental and Genetic Robustness," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-23, February.
    4. Joseph J. Hale & Takeshi Matsui & Ilan Goldstein & Martin N. Mullis & Kevin R. Roy & Christopher Ne Ville & Darach Miller & Charley Wang & Trevor Reynolds & Lars M. Steinmetz & Sasha F. Levy & Ian M. , 2024. "Genome-scale analysis of interactions between genetic perturbations and natural variation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Pei Zhao & Chao Wang & Shuhong Sun & Xi Wang & William E. Balch, 2024. "Tracing genetic diversity captures the molecular basis of misfolding disease," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Bryan Sands & Soo Yun & Alexander R. Mendenhall, 2021. "Introns control stochastic allele expression bias," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Masel, Joanna & Lyttle, David N., 2011. "The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species," Theoretical Population Biology, Elsevier, vol. 80(4), pages 317-322.
    8. Kaushik Bhattacharya & Samarpan Maiti & Szabolcs Zahoran & Lorenz Weidenauer & Dina Hany & Diana Wider & Lilia Bernasconi & Manfredo Quadroni & Martine Collart & Didier Picard, 2022. "Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Casper J Breuker & James S Patterson & Christian Peter Klingenberg, 2006. "A Single Basis for Developmental Buffering of Drosophila Wing Shape," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    10. Tracy Chih-Ting Koubkova-Yu & Jung-Chi Chao & Jun-Yi Leu, 2018. "Heterologous Hsp90 promotes phenotypic diversity through network evolution," PLOS Biology, Public Library of Science, vol. 16(11), pages 1-29, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:396:y:1998:i:6709:d:10.1038_24550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.