Author
Abstract
Iron is unique among biologically essential trace metals in having a higher particulate than dissolved concentration in ocean surface waters1. Uptake of dissolved iron is generally considered to be the norm for phytoplankton, as even the smallest iron-bearing particles are unavailable for transport into cells2,3. But the oceanic dissolved fraction is so small, and the particulate fraction so inert2, that phytoplankton production is limited by a dearth of available iron in some regions4. Here we use incubation experiments to show that Ochromonas sp., a common photosynthetic flagellate from the Pacific Ocean, can obtain iron directly in particulate form, by ingesting bacteria. Iron acquisition is highly efficient; Ochromonas assimilates 30% of the ingested ration, acquiring a high intracellular iron concentration and maintaining a significantly faster growth rate than when iron is provided in the dissolved phase. Phytoplankton capable of such phagotrophy (so-called mixotrophic species) may thus be able to assimilate iron in both particulate and dissolved forms in the ocean. Moreover, when iron availability is limited, the iron ‘cost’ of growth is diminished because Ochromonas derives a greater fraction of its energy from the bacteria. Analysis of standing stocks and clearance rates of plankton in the equatorial Pacific shows that the iron flux through mixotrophic flagellates can amount to 35–58% of the total Fe uptake by the entire autotrophic community. Our results suggest that the phagotrophic ingestion of bacteria may be an effective adaptive strategy for photosynthetic organisms to obtain iron for growth in iron-limited regions of the sea.
Suggested Citation
R. Maranger & D. F. Bird & N. M. Price, 1998.
"Iron acquisition by photosynthetic marine phytoplankton from ingested bacteria,"
Nature, Nature, vol. 396(6708), pages 248-251, November.
Handle:
RePEc:nat:nature:v:396:y:1998:i:6708:d:10.1038_24352
DOI: 10.1038/24352
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:396:y:1998:i:6708:d:10.1038_24352. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.