Author
Listed:
- Neil V. Marrion
(Vollum Institute, Oregon Health Sciences University Portland
School of Medical Sciences, University of Bristol)
- Steven J. Tavalin
(Vollum Institute, Oregon Health Sciences University Portland
School of Medical Sciences, University of Bristol)
Abstract
Calcium entry through voltage-gated calcium channels can activate either large- (BK) or small- (SK) conductance calcium-activated potassium channels. In hippocampal neurons, activation of BK channels underlies the falling phase of an action potential and generation of the fast afterhyperpolarization (AHP)1,2. In contrast, SK channel activation underlies generation of the slow AHP after a burst of action potentials3. The source of calcium for BK channel activation is unknown, but the slow AHP is blocked by dihydropyridine antagonists4,5, indicating that L-type calcium channels provide the calcium for activation of SK channels. It is not understood how this specialized coupling between calcium and potassium channels is achieved. Here we study channel activity in cell-attached patches from hippocampal neurons and report a unique specificity of coupling. L-type channels activate SK channels only, without activating BK channels present in the same patch. The delay between the opening of L-type channels and SK channels indicates that these channels are 50–150 nm apart. In contrast, N-type calcium channels activate BK channels only, with opening of the two channel types being nearlycoincident. This temporal association indicates that N and BK channels are very close. Finally, P/Q-type calcium channels do not couple to either SK or BK channels. These data indicate an absolute segregation of coupling between channels, and illustrate the functional importance of submembrane calcium microdomains.
Suggested Citation
Neil V. Marrion & Steven J. Tavalin, 1998.
"Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons,"
Nature, Nature, vol. 395(6705), pages 900-905, October.
Handle:
RePEc:nat:nature:v:395:y:1998:i:6705:d:10.1038_27674
DOI: 10.1038/27674
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:395:y:1998:i:6705:d:10.1038_27674. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.