IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v395y1998i6704d10.1038_27399.html
   My bibliography  Save this article

Quantized conductance through individual rows of suspended gold atoms

Author

Listed:
  • Hideaki Ohnishi

    (Takayanagi Particle Surface Project, ERATO, Japan Science and Technology Corporation)

  • Yukihito Kondo

    (Takayanagi Particle Surface Project, ERATO, Japan Science and Technology Corporation)

  • Kunio Takayanagi

    (Takayanagi Particle Surface Project, ERATO, Japan Science and Technology Corporation
    Tokyo Institute of Technology)

Abstract

As the scale of microelectronic engineering continues to shrink, interest has focused on the nature of electron transport through essentially one-dimensional nanometre-scale channels such as quantum wires1 and carbon nanotubes2,3. Quantum point contacts (QPCs) are structures (generally metallic) in which a ‘neck’ of atoms just a few atomic diameters wide (that is, comparable to the conduction electrons' Fermi wavelength) bridges two electrical contacts. They can be prepared by contacting a metal surface witha scanning tunnelling microscope (STM)4,5,6,7 and by other methods8,9,10,11,12, and typically display a conductance quantized in steps of 2e2/h(∼13 kΩ−1)13,14, where e is the electron charge and h is Planck's constant. Here we report conductance measurements on metal QPCs prepared with an STM that we can simultaneously image using an ultrahigh-vacuum electron microscope, which allows direct observation of the relation between electron transport and structure. We observe strands of gold atoms that are about one nanometre long and one single chain of gold atoms suspended between the electrodes. We can thus verify that the conductance of a single strand of atoms is 2e2/h and that the conductance of a double strand is twice as large, showing that equipartition holds for electron transport in these quantum systems.

Suggested Citation

  • Hideaki Ohnishi & Yukihito Kondo & Kunio Takayanagi, 1998. "Quantized conductance through individual rows of suspended gold atoms," Nature, Nature, vol. 395(6704), pages 780-783, October.
  • Handle: RePEc:nat:nature:v:395:y:1998:i:6704:d:10.1038_27399
    DOI: 10.1038/27399
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/27399
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/27399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudipto Chakrabarti & Ayelet Vilan & Gai Deutch & Annabelle Oz & Oded Hod & Juan E. Peralta & Oren Tal, 2022. "Magnetic control over the fundamental structure of atomic wires," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:395:y:1998:i:6704:d:10.1038_27399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.