IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v395y1998i6697d10.1038_25757.html
   My bibliography  Save this article

lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans

Author

Listed:
  • Steven J. Hallam

    (Sinsheimer Laboratories, University of California, Santa Cruz)

  • Yishi Jin

Abstract

In the nematode Caenorhabditis elegans six GABAergic motor neurons, known as DDs1,2, remodel their patterns of synaptic connectivity during larval development3. DD remodelling involves a complete reversal of the direction of information flow within nerve processes without marked changes in process morphology. We used a marker localized in vivo to DD presynaptic zones to analyse how the timing of DD remodelling is controlled. In wild-type animals, DDs remodel their synaptic outputs within a 3–5-hour period at the end of the first larval stage. We show that the heterochronic gene lin-14, which controls the timing of stage-specific cell lineages4,5, regulates the timing of DD synaptic output remodelling. In lin-14 loss-of-function mutants, DDs remodel precociously. The degree of precocious remodelling is correlated with the level of lin-14 activity. Expression of lin-14(+) in the DDs of lin-14-null mutants rescues the precocious remodelling, indicating that lin-14 can act cell-autonomously. Consistent with this hypothesis, LIN-14 protein levels decrease in the DDs before remodelling. Our observations reveal a role of heterochronic genes in non-dividing cells, and provide an example of cell-autonomous respecification of neuronal connectivity.

Suggested Citation

  • Steven J. Hallam & Yishi Jin, 1998. "lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans," Nature, Nature, vol. 395(6697), pages 78-82, September.
  • Handle: RePEc:nat:nature:v:395:y:1998:i:6697:d:10.1038_25757
    DOI: 10.1038/25757
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/25757
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/25757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kellianne D. Alexander & Shankar Ramachandran & Kasturi Biswas & Christopher M. Lambert & Julia Russell & Devyn B. Oliver & William Armstrong & Monika Rettler & Samuel Liu & Maria Doitsidou & Claire B, 2023. "The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:395:y:1998:i:6697:d:10.1038_25757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.