IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v394y1998i6693d10.1038_29106.html
   My bibliography  Save this article

Crystal structure of a small heat-shock protein

Author

Listed:
  • Kyeong Kyu Kim

    (University of California at Berkeley)

  • Rosalind Kim

    (University of California at Berkeley)

  • Sung-Hou Kim

    (University of California at Berkeley)

Abstract

The principal heat-shock proteins that have chaperone activity (that is, they protect newly made proteins from misfolding) belong to five conserved classes: HSP100, HSP90, HSP70, HSP60 and the small heat-shock proteins (sHSPs). The sHSPs can form large multimeric structures and have a wide range of cellular functions, including endowing cells with thermotolerance in vivo1,2 and being able to act as molecular chaperones in vitro3,4,5,6,7,8; sHSPs do this by forming stable complexes with folding intermediates of their protein substrates9,10. However, there is little information available about these structures or the mechanism by which substrates are protected from thermal denaturation by sHSPs. Here we report the crystal structure of a small heat-shock protein from Methanococcus jannaschii, a hyperthermophilic archaeon. The monomeric folding unit is a composite β-sandwich in which one of the β-strands comes from a neighbouring molecule. Twenty-four monomers form a hollow spherical complex of octahedral symmetry, with eight trigonal and six square ‘windows’. The sphere has an outer diameter of 120 Å and an inner diameter of 65 Å.

Suggested Citation

  • Kyeong Kyu Kim & Rosalind Kim & Sung-Hou Kim, 1998. "Crystal structure of a small heat-shock protein," Nature, Nature, vol. 394(6693), pages 595-599, August.
  • Handle: RePEc:nat:nature:v:394:y:1998:i:6693:d:10.1038_29106
    DOI: 10.1038/29106
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/29106
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/29106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Mühlhofer & Carsten Peters & Thomas Kriehuber & Marina Kreuzeder & Pamina Kazman & Natalia Rodina & Bernd Reif & Martin Haslbeck & Sevil Weinkauf & Johannes Buchner, 2021. "Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:394:y:1998:i:6693:d:10.1038_29106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.