IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v394y1998i6688d10.1038_27938.html
   My bibliography  Save this article

A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity

Author

Listed:
  • Guri Tzivion

    (Massachusetts General Hospital, Harvard Medical School)

  • Zhijun Luo

    (Massachusetts General Hospital, Harvard Medical School)

  • Joseph Avruch

    (Massachusetts General Hospital, Harvard Medical School)

Abstract

cRaf-1 is a mitogen-activated protein kinase that is the main effector recruited by GTP-bound Ras in order to activate the MAP kinase pathway1. Inactive Raf is found in the cytosol in a complex with Hsp90, Hsp50 (Cdc37)2,3 and the 14-3-3 proteins4. GTP-bound Ras binds Raf and is necessary but not sufficient for the stable activation of Raf that occurs in response to serum, epidermal growth factor, platelet-derived growth factor or insulin5,6,7,8. These agents cause a two- to threefold increase in overall phosphorylation of Raf on serine/threonine residues8,9, and treatment of cRaf-1 with protein (serine/threonine) phosphatases can deactivate it, at least partially10. The role of 14-3-3 proteins in the regulation of Raf's kinase activity is uncertain4,11 and is investigated here. Active Raf can be almost completely deactivated in vitro by displacement of 14-3-3 using synthetic phosphopeptides. Deactivation can be substantially reversed by addition of purified recombinant bacterial 14-3-3; however, Raf must have been previously activated in vivo to be reactivated by 14-3-3 in vitro. The ability of 14-3-3 to support Raf activity is dependent on phosphorylation of serine residues on Raf and on the integrity of the 14-3-3 dimer; mutant monomeric forms of 14-3-3, although able to bind Raf in vivo, do not enable Raf to be activated in vivo or restore Raf activity after displacement of 14-3-3 in vitro. The 14-3-3 protein is not required to induce dimerization of Raf. We propose that dimeric 14-3-3 is needed both to maintain Raf in an inactive state in the absence of GTP-bound Ras and to stabilize an active conformation of Raf produced during activation in vivo.

Suggested Citation

  • Guri Tzivion & Zhijun Luo & Joseph Avruch, 1998. "A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity," Nature, Nature, vol. 394(6688), pages 88-92, July.
  • Handle: RePEc:nat:nature:v:394:y:1998:i:6688:d:10.1038_27938
    DOI: 10.1038/27938
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/27938
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/27938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:394:y:1998:i:6688:d:10.1038_27938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.