IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6685d10.1038_31248.html
   My bibliography  Save this article

Molecular identification of a hyperpolarization-activated channel in sea urchin sperm

Author

Listed:
  • Renate Gauss
  • Reinhard Seifert
  • U. Benjamin Kaupp

    (Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich)

Abstract

Sea urchin eggs attract sperm through chemotactic peptides, which evoke complex changes in membrane voltage and in the concentrations of cyclic AMP, cyclic GMP and Ca2+ ions (see ref. 1 for a review). The intracellular signalling pathways and their cellular targets are largely unknown. We have now cloned, from sea urchin testis, the complementary DNA encoding a channel polypeptide, SPIH. Functional expression of SPIH gives rise to weakly K+-selective hyperpolarization-activated channels, whose activity is enhanced by the direct action of cAMP. Thus, SPIH is under the dual control of voltage and cAMP. The SPIH channel, which is confined to the sperm flagellum, may be involved in the control of flagellar beating. SPIH currents exhibit all the hallmarks of hyperpolarization-activated currents (Ih)2,3, which participate in the rhythmic firing of central neurons, control pacemaking in the heart, and curtail saturation by bright light in retinal photoreceptors2,3. Because of their sequence4 and functional properties, Ih channels form a class of their own within thesuperfamily of voltage-gated and cyclic-nucleotide-gated channels.

Suggested Citation

  • Renate Gauss & Reinhard Seifert & U. Benjamin Kaupp, 1998. "Molecular identification of a hyperpolarization-activated channel in sea urchin sperm," Nature, Nature, vol. 393(6685), pages 583-587, June.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6685:d:10.1038_31248
    DOI: 10.1038/31248
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/31248
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/31248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Espinal-Enríquez & Alberto Darszon & Adán Guerrero & Gustavo Martínez-Mekler, 2014. "In Silico Determination of the Effect of Multi-Target Drugs on Calcium Dynamics Signaling Network Underlying Sea Urchin Spermatozoa Motility," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    2. Sabine Hummert & Susanne Thon & Thomas Eick & Ralf Schmauder & Eckhard Schulz & Klaus Benndorf, 2018. "Activation gating in HCN2 channels," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-18, March.
    3. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6685:d:10.1038_31248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.