Author
Listed:
- H. Hollis Wickman
(Center for BioMolecular Science and Engineering, Naval Research Laboratory)
- Julius N. Korley
(National Science Foundation
Center for BioMolecular Science and Engineering, Naval Research Laboratory
Clark Atlanta University)
Abstract
The properties of two-dimensional arrays of micrometre-sized particles are of interest in relation to a wide range of phenomena, including self-organization and phase behaviour in colloid science and condensed-matter physics1,2,3, the behaviour of dusty plasmas4 and the templating of ordered structures for photonic applications5. Most studies have used pre-existing particles such as monodisperse latex spheres, which may be manipulated with electric or magnetic fields. In contrast, we report here an inorganic solution that spontaneously precipitates a self-organized two-dimensional colloid crystal at the air/water interface. A solution of calcium hydroxide exposed to air reacts with dissolved carbon dioxide to precipitate microcrystals of calcium carbonate in the form of calcite. These aggregate at the surface to form a disordered gel mat with fractal characteristics6. We find, however, that in aged solutions a second population of charged microcrystals with the ‘dogtooth spar’ morphology appears on the surface. These crystallites, which can be observed by optical microscopy, become organized into a regular triangular lattice. The competition between electrostatic and capillary forces between particles leads to lattice spacings of the order of 125 to 175 µm, 5 to 7 times the diameter of the particles. These structures are stable for around 24 h, but eventually aggregate with the fractal gel. The mechanism of their self-organization, as yet incompletely understood, might provide some insights into similar phenomena in colloid science2,3,7,8,9.
Suggested Citation
H. Hollis Wickman & Julius N. Korley, 1998.
"Colloid crystal self-organization and dynamics at the air/water interface,"
Nature, Nature, vol. 393(6684), pages 445-447, June.
Handle:
RePEc:nat:nature:v:393:y:1998:i:6684:d:10.1038_30930
DOI: 10.1038/30930
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6684:d:10.1038_30930. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.