IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6681d10.1038_30211.html
   My bibliography  Save this article

Host–guest encapsulation of materials by assembled virus protein cages

Author

Listed:
  • Trevor Douglas

    (Temple University)

  • Mark Young

    (Montana State University)

Abstract

Self-assembled cage structures of nanometre dimensions can be used as constrained environments for the preparation of nanostructured materials1,2 and the encapsulation of guest molecules3, with potential applications in drug delivery4 and catalysis5. In synthetic systems the number of subunits contributing to cage structures is typically rather small3,6. But the protein coats of viruses (virions) commonly comprise hundreds of subunits that self-assemble into a cage for transporting viral nucleic acids. Many virions, moreover, can undergo reversible structural changes that open or close gated pores to allow switchable access to their interior7. Here we show that such a virion — that of the cowpea chlorotic mottle virus — can be used as a host for the synthesis of materials. We report the mineralization of two polyoxometalate species (paratungstate and decavanadate) and the encapsulation of an anionic polymer inside this virion, controlled by pH-dependent gating of the virion's pores. The diversity in size and shape of such virus particles make this a versatile strategy for materials synthesis and molecular entrapment.

Suggested Citation

  • Trevor Douglas & Mark Young, 1998. "Host–guest encapsulation of materials by assembled virus protein cages," Nature, Nature, vol. 393(6681), pages 152-155, May.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6681:d:10.1038_30211
    DOI: 10.1038/30211
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/30211
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/30211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6681:d:10.1038_30211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.