IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v392y1998i6671d10.1038_32164.html
   My bibliography  Save this article

Spatial and temporal organization during cardiac fibrillation

Author

Listed:
  • Richard A. Gray

    (SUNY Health Science Center
    University of Albama at Birmingham)

  • Arkady M. Pertsov

    (SUNY Health Science Center)

  • José Jalife

    (SUNY Health Science Center)

Abstract

Cardiac fibrillation (spontaneous, asynchronous contractions of cardiac muscle fibres) is the leading cause of death in the industrialized world1, yet it is not clear how it occurs. It has been debated whether or not fibrillation is a random phenomenon. There is some determinism during fibrillation2,3, perhaps resulting from rotating waves of electrical activity4,5,6. Here we present a new algorithm that markedly reduces the amount of data required to depict the complex spatiotemporal patterns of fibrillation. We use a potentiometric dye7 and video imaging8,9 to record the dynamics of transmembrane potentials at many sites during fibrillation. Transmembrane signals at each site exhibit a strong periodic component centred near 8 Hz. This periodicity is seen as an attractor in two-dimensional-phase space and each site can be represented by its phase around the attractor. Spatial phase maps at each instant reveal the ‘sources’ of fibrillation in the form of topological defects, or phase singularities10, at a few sites. Using our method of identifying phase singularities, we can elucidate the mechanisms for the formation and termination of these singularities, and represent an episode of fibrillation by locating singularities. Our results indicate an unprecedented amount of temporal and spatial organization during cardiac fibrillation.

Suggested Citation

  • Richard A. Gray & Arkady M. Pertsov & José Jalife, 1998. "Spatial and temporal organization during cardiac fibrillation," Nature, Nature, vol. 392(6671), pages 75-78, March.
  • Handle: RePEc:nat:nature:v:392:y:1998:i:6671:d:10.1038_32164
    DOI: 10.1038/32164
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/32164
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/32164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Yang F. & Fuller, Chase A. & McGuire, Margaret K. & Glaser, Rebecca & Smith, Nathaniel J. & Manz, Niklas & Lindner, John F., 2021. "Disruption and recovery of reaction–diffusion wavefronts interacting with concave, fractal, and soft obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Young-Seon Lee & Jun-Seop Song & Minki Hwang & Byounghyun Lim & Boyoung Joung & Hui-Nam Pak, 2016. "A New Efficient Method for Detecting Phase Singularity in Cardiac Fibrillation," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    3. Rupamanjari Majumder & Alok Ranjan Nayak & Rahul Pandit, 2012. "Nonequilibrium Arrhythmic States and Transitions in a Mathematical Model for Diffuse Fibrosis in Human Cardiac Tissue," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-21, October.
    4. Smith, Nathaniel J. & Glaser, Rebecca & Hui, Vincent W.H. & Lindner, John F. & Manz, Niklas, 2019. "Disruption and recovery of reaction–diffusion wavefronts colliding with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 307-320.
    5. Laura Martinez-Mateu & Lucia Romero & Ana Ferrer-Albero & Rafael Sebastian & José F Rodríguez Matas & José Jalife & Omer Berenfeld & Javier Saiz, 2018. "Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-26, March.
    6. Feng, Peihua & Fan, Qiang & Yuan, Zhixuan & Wu, Ying, 2021. "Transition from regular to labyrinth pattern in a neuronal network with fast inhibitory synapses," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:392:y:1998:i:6671:d:10.1038_32164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.