IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v391y1998i6665d10.1038_34943.html
   My bibliography  Save this article

Stimulation by Rad52 of yeast Rad51- mediated recombination

Author

Listed:
  • Akira Shinohara

    (Graduate School of Science, Osaka University)

  • Tomoko Ogawa

    (National Institute of Genetics)

Abstract

In Saccharomyces cerevisiae, the RAD51 and RAD52 genes are involved in recombination and in repair of damaged DNA1,2,3. The RAD51 gene is a structural and functional homologue of the recA gene4,5 and the gene product participates in strand exchange and single-stranded-DNA-dependent ATP hydrolysis by means of nucleoprotein filament formation6,7,8,9,10,11. The RAD52 gene12 is important in RAD51-mediated recombination1,2,3. Binding of this protein to Rad51 (refs 4, 13) suggests that they cooperate in recombination. Homologues of both Rad51 and Rad52 are conserved from yeast to humans14,15,16, suggesting that the mechanisms used for pairing homologous DNA molecules during recombination may be universal in eukaryotes. Here we show that Rad52 protein stimulates Rad51 reactions and that binding to Rad51 is necessary for this stimulatory effect. We conclude that this binding is crucial in recombination and that it facilitates the formation of Rad51 nucleoprotein filaments.

Suggested Citation

  • Akira Shinohara & Tomoko Ogawa, 1998. "Stimulation by Rad52 of yeast Rad51- mediated recombination," Nature, Nature, vol. 391(6665), pages 404-407, January.
  • Handle: RePEc:nat:nature:v:391:y:1998:i:6665:d:10.1038_34943
    DOI: 10.1038/34943
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/34943
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/34943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengli Zhao & Zehui Dong & Yuna Zhao, 2022. "Order-of-Addition Orthogonal Arrays with High Strength," Mathematics, MDPI, vol. 10(7), pages 1-17, April.
    2. Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Masaru Ito & Asako Furukohri & Kenichiro Matsuzaki & Yurika Fujita & Atsushi Toyoda & Akira Shinohara, 2023. "FIGNL1 AAA+ ATPase remodels RAD51 and DMC1 filaments in pre-meiotic DNA replication and meiotic recombination," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Chen, Jianbin & Mukerjee, Rahul & Lin, Dennis K.J., 2020. "Construction of optimal fractional Order-of-Addition designs via block designs," Statistics & Probability Letters, Elsevier, vol. 161(C).
    5. Guangxue Liu & Jimin Li & Boxue He & Jiaqi Yan & Jingyu Zhao & Xuejie Wang & Xiaocong Zhao & Jingyan Xu & Yeyao Wu & Simin Zhang & Xiaoli Gan & Chun Zhou & Xiangpan Li & Xinghua Zhang & Xuefeng Chen, 2023. "Bre1/RNF20 promotes Rad51-mediated strand exchange and antagonizes the Srs2/FBH1 helicases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:391:y:1998:i:6665:d:10.1038_34943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.