IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v391y1998i6665d10.1038_34937.html
   My bibliography  Save this article

Synergistic actions of Rad51 and Rad52 in recombination and DNA repair

Author

Listed:
  • Fiona E. Benson

    (Imperial Cancer Research Fund, Clare Hall Laboratories)

  • Peter Baumann

    (Imperial Cancer Research Fund, Clare Hall Laboratories)

  • Stephen C. West

    (Imperial Cancer Research Fund, Clare Hall Laboratories)

Abstract

In the yeast Saccharomyces cerevisiae, mutations in the genes RAD51 or RAD52 result in severe defects in genetic recombination and the repair of double-strand DNA breaks. These genes, and others of the RAD52 epistasis group (RAD50, RAD54, RAD55, RAD57, RAD59, MRE11 and XRS2), were first identified by their sensitivity to X-rays1. They were subsequently shown to be required for spontaneous and induced mitotic recombination, meiotic recombination, and mating-type switching (reviewed in ref. 2). Human homologues of RAD50, RAD51, RAD52, RAD54 and MRE11 have been identified3,4,5,6. Targeted disruption of the murine RAD51 gene results in an embryonic lethal phenotype, indicating that Rad51 protein is required during cell proliferation7,8. Biochemical studies have shown that human RAD51 encodes a protein of relative molecular mass 36,966 (hRad51) that promotes ATP-dependent homologous pairing and DNA strand exchange9,10,11. As a structural and functional homologue of the RecA protein from Escherichia coli3,9,12, hRad51 is thought to play a central role in recombination. Yeast Rad51 has been shown to interact with Rad52 protein13,14,15, as does the human homologue16. Here we show that hRad52 stimulates homologous pairing by hRad51. The DNA-binding properties of hRad52 indicate that Rad52 is involved in an early stage of Rad51-mediated recombination.

Suggested Citation

  • Fiona E. Benson & Peter Baumann & Stephen C. West, 1998. "Synergistic actions of Rad51 and Rad52 in recombination and DNA repair," Nature, Nature, vol. 391(6665), pages 401-404, January.
  • Handle: RePEc:nat:nature:v:391:y:1998:i:6665:d:10.1038_34937
    DOI: 10.1038/34937
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/34937
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/34937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangxue Liu & Jimin Li & Boxue He & Jiaqi Yan & Jingyu Zhao & Xuejie Wang & Xiaocong Zhao & Jingyan Xu & Yeyao Wu & Simin Zhang & Xiaoli Gan & Chun Zhou & Xiangpan Li & Xinghua Zhang & Xuefeng Chen, 2023. "Bre1/RNF20 promotes Rad51-mediated strand exchange and antagonizes the Srs2/FBH1 helicases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:391:y:1998:i:6665:d:10.1038_34937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.