IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v391y1998i6664d10.1038_34611.html
   My bibliography  Save this article

Quantum interference in electron collision

Author

Listed:
  • R. C. Liu

    (ERATO Quantum Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University)

  • B. Odom

    (ERATO Quantum Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University)

  • Y. Yamamoto

    (ERATO Quantum Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University
    NTT Basic Research Laboratories)

  • S. Tarucha

    (NTT Basic Research Laboratories)

Abstract

The indistinguishability of identical quantum particles can lead to quantum interferences that profoundly affect their scattering1,2. If two particles collide and scatter, the process that results in the detection of the first particle in one direction and the second particle in another direction interferes quantum mechanically with the physically indistinguishable process where the roles of the particles are reversed. For bosons such as photons, a constructive interference between probability amplitudes can enhance the probability, relative to classical expectations, that both are detected in the same direction — this is known as ‘bunching’. But for fermions such as electrons, a destructive interference should suppress this probability (‘anti-bunching’); this interference is the origin of the Pauli exclusion principle, which states that two electrons can never occupy the same state. Although two-particle interferences have been shown for colliding photons3,4, no similar demonstration for electrons exists2,5,6. Here we report the realization of this destructive quantum interference in the collision of electrons at a beam splitter. In our experiments, the quantum interference responsible for the Pauli exclusion principle is manifest as the suppression in electron current noise after collision.

Suggested Citation

  • R. C. Liu & B. Odom & Y. Yamamoto & S. Tarucha, 1998. "Quantum interference in electron collision," Nature, Nature, vol. 391(6664), pages 263-265, January.
  • Handle: RePEc:nat:nature:v:391:y:1998:i:6664:d:10.1038_34611
    DOI: 10.1038/34611
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/34611
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/34611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwanchul Jung & Dongsung T. Park & Seokyeong Lee & Uhjin Kim & Chanuk Yang & Jehyun Kim & V. Umansky & Dohun Kim & H.-S. Sim & Yunchul Chung & Hyoungsoon Choi & Hyung Kook Choi, 2023. "Observation of electronic modes in open cavity resonator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. June-Young M. Lee & H.-S. Sim, 2022. "Non-Abelian anyon collider," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:391:y:1998:i:6664:d:10.1038_34611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.