IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v391y1998i6662d10.1038_34145.html
   My bibliography  Save this article

Atomic structure and electronic properties of single-walled carbon nanotubes

Author

Listed:
  • Teri Wang Odom

    (Department of Chemistry and Chemical Biology Harvard University)

  • Jin-Lin Huang

    (Department of Chemistry and Chemical Biology Harvard University)

  • Philip Kim

    (Harvard University)

  • Charles M. Lieber

    (Department of Chemistry and Chemical Biology Harvard University
    Harvard University)

Abstract

Carbon nanotubes1 are predicted to be metallic or semiconducting depending on their diameter and the helicity of the arrangement of graphitic rings in their walls2,3,4,5. Scanning tunnelling microscopy (STM) offers the potential to probe this prediction, as it can resolve simultaneously both atomic structure and the electronic density of states. Previous STM studies of multi-walled nanotubes6,7,8,9 and single-walled nanotubes (SWNTs)10 have provided indications of differing structures and diameter-dependent electronic properties, but have not revealed any explicit relationship between structure and electronic properties. Here we report STM measurements of the atomic structure and electronic properties of SWNTs. We are able to resolve the hexagonal-ring structure of the walls, and show that the electronic properties do indeed depend on diameter and helicity. We find that the SWNT samples exhibit many different structures, with no one species dominating.

Suggested Citation

  • Teri Wang Odom & Jin-Lin Huang & Philip Kim & Charles M. Lieber, 1998. "Atomic structure and electronic properties of single-walled carbon nanotubes," Nature, Nature, vol. 391(6662), pages 62-64, January.
  • Handle: RePEc:nat:nature:v:391:y:1998:i:6662:d:10.1038_34145
    DOI: 10.1038/34145
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/34145
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/34145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Su & Xiao Li & Linhai Li & Dehua Yang & Futian Wang & Xiaojun Wei & Weiya Zhou & Hiromichi Kataura & Sishen Xie & Huaping Liu, 2023. "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Ng, Kai-Wern & Lam, Wei-Haur & Pichiah, Saravanan, 2013. "A review on potential applications of carbon nanotubes in marine current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 331-339.
    3. Humaira Gul & Saima Nasreen, 2018. "Heavy Metal Uptake From Contaminated Water Using Carbon Nanotubes: A Review," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(2), pages 4-8, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:391:y:1998:i:6662:d:10.1038_34145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.