Author
Listed:
- M. Trau
(Princeton University
Princeton Materials Institute, Princeton University
The University of Queensland)
- N. Yao
(Princeton Materials Institute, Princeton University)
- E. Kim
(Harvard University)
- Y. Xia
(Harvard University)
- G. M. Whitesides
(Harvard University)
- I. A. Aksay
(Princeton University
Princeton Materials Institute, Princeton University)
Abstract
The supramolecular assembly of surfactant molecules at a solid–liquid interface can produce tubular structures with diameters of around 10 nm (refs 1,2,3,4), which can be used for the templated polymerization of mesoporous silica thin films3,4,5. The orientation of the tubules depends primarily on the nature of the substrate–surfactant interaction. These nanostructured films hold much promise for applications such as their use as orientated nanowires6, sensor/actuator arrays7,8,9 and optoelectronic devices10. But a method of patterning the tubules and orientating them into designed arrangements is required for many of these possibilities to be realized. Here we describe a method that allows the direction of growth of these tubules to be guided by infiltrating a reaction fluid into the microcapillaries of a mould in contact with a substrate11. An electric field applied tangentially to the surface within the capillaries induces electro-osmotic flow, and also enhances the rates of silica polymerization around the tubules by localized Joule heating. After removal of the mould, patterned bundles of orientated nanotubules remain on the surface. This method permits the formation of orientated mesoporous channels on a non-conducting substrate with an arbitrary microscopic pattern.
Suggested Citation
M. Trau & N. Yao & E. Kim & Y. Xia & G. M. Whitesides & I. A. Aksay, 1997.
"Microscopic patterning of orientated mesoscopic silica through guided growth,"
Nature, Nature, vol. 390(6661), pages 674-676, December.
Handle:
RePEc:nat:nature:v:390:y:1997:i:6661:d:10.1038_37764
DOI: 10.1038/37764
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:390:y:1997:i:6661:d:10.1038_37764. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.