IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v390y1997i6656d10.1038_36613.html
   My bibliography  Save this article

Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis

Author

Listed:
  • Stephen K. Dove

    (Centre for Clinical Research in Immunology and Signalling
    Departments of Biochemistry)

  • Frank T. Cooke

    (Imperial Cancer Research Fund Laboratories)

  • Michael R. Douglas

    (Departments of Rheumatology, University of Birmingham)

  • Lee G. Sayers

    (Imperial Cancer Research Fund Laboratories)

  • Peter J. Parker

    (Imperial Cancer Research Fund Laboratories)

  • Robert H. Michell

    (Centre for Clinical Research in Immunology and Signalling
    Departments of Biochemistry)

Abstract

Inositol phospholipids play multiple roles in cell signalling systems. Two widespread eukaryotic phosphoinositide-based signal transduction mechanisms, phosphoinositidase C-catalysed phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) hydrolysis and 3-OH kinase-catalysed PtdIns(4,5)P2 phosphorylation, make the second messengers inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) sn-1,2-diacylglycerol and PtdIns(3,4,5)P3 (refs 1,2,3,4,5,6,7). In addition, PtdIns(4,5)P2 and PtdIns3P have been implicated in exocytosis and membrane trafficking8. We now show that when the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are hyperosmotically stressed, they rapidly synthesize phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2) by a process that involves activation of a PtdIns3P 5-OH kinase. This PtdIns(3,5)P2 accumulation only occurs in yeasts that have an active vps34-encoded PtdIns 3-OH kinase, showing that this latter kinase makes the PtdIns3P needed for PtdIns(3,5)P2 synthesis and indicating that PtdIns(3,5)P2 may have a role in sorting vesicular proteins. PtdIns(3,5)P2 is also present in mammalian and plant cells: in monkey Cos-7 cells, its labelling is inversely related to the external osmotic pressure. The stimulation of a PtdIns3P 5-OH kinase-catalysed synthesis of PtdIns(3,5)P2, a molecule that might be a new type of phosphoinositide ‘second messenger’, thus appears to be central to a widespread and previously uncharacterized regulatory pathway.

Suggested Citation

  • Stephen K. Dove & Frank T. Cooke & Michael R. Douglas & Lee G. Sayers & Peter J. Parker & Robert H. Michell, 1997. "Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis," Nature, Nature, vol. 390(6656), pages 187-192, November.
  • Handle: RePEc:nat:nature:v:390:y:1997:i:6656:d:10.1038_36613
    DOI: 10.1038/36613
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/36613
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/36613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Yuan & Dawid Jaślan & Taufiq Rahman & Stephen R. Bolsover & Vikas Arige & Larry E. Wagner & Carla Abrahamian & Rachel Tang & Marco Keller & Jonas Hartmann & Anna S. Rosato & Eva-Maria Weiden & Fran, 2022. "Segregated cation flux by TPC2 biases Ca2+ signaling through lysosomes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:390:y:1997:i:6656:d:10.1038_36613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.