IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v390y1997i6656d10.1038_36579.html
   My bibliography  Save this article

Math1 is essential for genesis of cerebellar granule neurons

Author

Listed:
  • Nissim Ben-Arie

    (Departments of Molecular and Human Genetics
    Pediatrics)

  • Hugo J. Bellen

    (Departments of Molecular and Human Genetics
    Cell Biology
    Howard Hughes Medical Institute, Baylor College of Medicine)

  • Dawna L. Armstrong

    (Pathology)

  • Alanna E. McCall

    (Pediatrics)

  • Polina R. Gordadze

    (Pediatrics)

  • Qiuxia Guo

    (Pathology)

  • Martin M. Matzuk

    (Departments of Molecular and Human Genetics
    Cell Biology
    Pathology)

  • Huda Y. Zoghbi

    (Departments of Molecular and Human Genetics
    Pediatrics
    Howard Hughes Medical Institute, Baylor College of Medicine)

Abstract

The cerebellum is essential for fine motor control of movement and posture, and its dysfunction disrupts balance and impairs control of speech, limb and eye movements. The developing cerebellum consists mainly of three types of neuronal cells: granule cells in the external germinal layer, Purkinje cells, and neurons of the deep nuclei1. The molecular mechanisms that underlie the specific determination and the differentiation of each of these neuronal subtypes are unknown. Math1 (refs 2, 3), the mouse homologue of the Drosophila gene atonal4, encodes a basic helix–loop–helix transcription factor that is specifically expressed in the precursors of the external germinal layer and their derivatives. Here we report that mice lacking Math1 fail to form granule cells and are born with a cerebellum that is devoid of an external germinal layer. To our knowledge, Math1 is the first gene to be shown to be required in vivo for the genesis of granule cells, and hence the predominant neuronal population in the cerebellum.

Suggested Citation

  • Nissim Ben-Arie & Hugo J. Bellen & Dawna L. Armstrong & Alanna E. McCall & Polina R. Gordadze & Qiuxia Guo & Martin M. Matzuk & Huda Y. Zoghbi, 1997. "Math1 is essential for genesis of cerebellar granule neurons," Nature, Nature, vol. 390(6656), pages 169-172, November.
  • Handle: RePEc:nat:nature:v:390:y:1997:i:6656:d:10.1038_36579
    DOI: 10.1038/36579
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/36579
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/36579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Wang & Tian Yang & Amanda Kedaigle & Gabriela Pregernig & Ryan McCarthy & Ben Holmes & Xudong Wu & Lars Becker & Ning Pan & Kathy So & Leon Chen & Jun He & Ahmad Mahmoudi & Soumya Negi & Monika K, 2024. "Precise genetic control of ATOH1 enhances maturation of regenerated hair cells in the mature mouse utricle," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Meike E. Heijden & Alejandro G. Rey Hipolito & Linda H. Kim & Dominic J. Kizek & Ross M. Perez & Tao Lin & Roy V. Sillitoe, 2023. "Glutamatergic cerebellar neurons differentially contribute to the acquisition of motor and social behaviors," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Nadine Schroeder & Manuela Wuelling & Daniel Hoffmann & Beate Brand-Saberi & Andrea Vortkamp, 2019. "Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:390:y:1997:i:6656:d:10.1038_36579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.