IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v389y1997i6654d10.1038_40140.html
   My bibliography  Save this article

Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice

Author

Listed:
  • Dorothy M. Supp

    (The Children's Hospital Research Foundation)

  • David P. Witte

    (The Children's Hospital Research Foundation)

  • S. Steven Potter

    (The Children's Hospital Research Foundation)

  • Martina Brueckner

    (Department of Pediatrics/Cardiology Yale School of Medicine)

Abstract

The development of characteristic visceral asymmetries along the left–right (LR) axis in an initially bilaterally symmetrical embryo is an essential feature of vertebrate patterning. The allelic mouse mutations inversus viscerum (iv)1,2 and legless (lgl)3,4 produce LR inversion, or situs inversus, in half of live-born homozygotes. This suggests that the iv gene product drives correct LR determination, and in its absence this process is randomized2. These mutations provide tools for studying the development of LR-handed asymmetry and provide mouse models of human lateralization defects. At the molecular level, the normally LR asymmetric expression patterns of nodal5 and lefty6 are randomized in iv/iv embryos, suggesting that iv functions early in the genetic hierarchy of LRspecification. Here we report the positional cloning of an axonemal dynein heavy-chain gene, left/right-dynein (lrd), that is mutated in both lgl and iv. lrd is expressed in the node of the embryo at embryonic day 7.5, consistent with its having a role in LR development7. Our findings indicate that dynein, a microtubule-based motor, is involved in the determination of LR-handed asymmetry and provide insight into the early molecular mechanisms of this process.

Suggested Citation

  • Dorothy M. Supp & David P. Witte & S. Steven Potter & Martina Brueckner, 1997. "Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice," Nature, Nature, vol. 389(6654), pages 963-966, October.
  • Handle: RePEc:nat:nature:v:389:y:1997:i:6654:d:10.1038_40140
    DOI: 10.1038/40140
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/40140
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/40140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ran Wang & Xianfa Yang & Jiehui Chen & Lin Zhang & Jonathan A. Griffiths & Guizhong Cui & Yingying Chen & Yun Qian & Guangdun Peng & Jinsong Li & Liantang Wang & John C. Marioni & Patrick P. L. Tam & , 2023. "Time space and single-cell resolved tissue lineage trajectories and laterality of body plan at gastrulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:389:y:1997:i:6654:d:10.1038_40140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.