Author
Listed:
- Byeongmoon Jeong
(Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah)
- You Han Bae
(Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah)
- Doo Sung Lee
(Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah)
- Sung Wan Kim
(Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah)
Abstract
Polymers that display a physicochemical response to stimuli are widely explored as potential drug-delivery systems1,2,3,4. Stimuli studied to date include chemical substances and changes in temperature, pH and electric field. Homopolymers or copolymers of N-isopropylacrylamide5,6 and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (known as poloxamers)7 are typical examples of thermosensitive polymers, but their use in drug delivery is problematic because they are toxic and non-biodegradable. Biodegradable polymers used for drug delivery to date have mostly been in the form of injectable microspheres or implant systems, which require complicated fabrication processes using organic solvents8. Such systems have the disadvantage that the use of organic solvents can cause denaturation when protein drugs are to be encapsulated. Furthermore, the solid form requires surgical insertion, which often results in tissue irritation and damage. Here we report the synthesis of a thermosensitive, biodegradable hydrogel consisting of blocks of poly(ethylene oxide) and poly(L-lactic acid). Aqueous solutions of these copolymers exhibit temperature-dependent reversible gel–sol transitions. The hydrogel can be loaded with bioactive molecules in an aqueous phase at an elevated temperature (around 45 °C), where they form a sol. In this form, the polymer is injectable. On subcutaneous injection and subsequent rapid cooling to body temperature, the loaded copolymer forms a gel that can act as a sustained-release matrix for drugs.
Suggested Citation
Byeongmoon Jeong & You Han Bae & Doo Sung Lee & Sung Wan Kim, 1997.
"Biodegradable block copolymers as injectable drug-delivery systems,"
Nature, Nature, vol. 388(6645), pages 860-862, August.
Handle:
RePEc:nat:nature:v:388:y:1997:i:6645:d:10.1038_42218
DOI: 10.1038/42218
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:388:y:1997:i:6645:d:10.1038_42218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.