IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v388y1997i6643d10.1038_41737.html
   My bibliography  Save this article

Plasticity and avalanche behaviour in microfracturing phenomena

Author

Listed:
  • Stefano Zapperi

    (Boston University)

  • Alessandro Vespignani

    (Instituut-Lorentz, University of Leiden)

  • H. Eugene Stanley

    (Boston University)

Abstract

Inhomogeneous materials, such as plaster or concrete, subjected to an external elastic stress display sudden movements owing to the formation and propagation of microfractures. Studies of acoustic emission from these systems reveal power-law behaviour1. Similar behaviour in damage propagation has also been seen in acoustic emission resulting from volcanic activity2 and hydrogen precipitation in niobium3. It has been suggested that the underlying fracture dynamics in these systems might display self-organized criticality4, implying that long-ranged correlations between fracture events lead to a scale-free cascade of ‘avalanches’. A hierarchy of avalanche events is also observed in a wide range of other systems, such as the dynamics of random magnets5 and high-temperature superconductors6 in magnetic fields, lung inflation7 and seismic behaviour characterized by the Gutenberg–Richter law8. The applicability of self-organized criticality to microfracturing has been questioned9,10, however, as power laws alone are not unequivocal evidence for it. Here we present a scalar model of microfracturing which generates power-law behaviour in properties related to acoustic emission, and a scale-free hierarchy of avalanches characteristic of self-organized criticality. The geometric structure of the fracture surfaces agrees with that seen experimentally. We find that the critical steady state exhibits plastic macroscopic behaviour, which is commonly observed in real materials.

Suggested Citation

  • Stefano Zapperi & Alessandro Vespignani & H. Eugene Stanley, 1997. "Plasticity and avalanche behaviour in microfracturing phenomena," Nature, Nature, vol. 388(6643), pages 658-660, August.
  • Handle: RePEc:nat:nature:v:388:y:1997:i:6643:d:10.1038_41737
    DOI: 10.1038/41737
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/41737
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/41737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:388:y:1997:i:6643:d:10.1038_41737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.