Author
Listed:
- Leo R. M. Maas
(Netherlands Institute for Sea Research)
- Dominique Benielli
(Ecole Normale et Superieure de Lyon, Laboratoire de Physique)
- Joël Sommeria
(Ecole Normale et Superieure de Lyon, Laboratoire de Physique)
- Frans-Peter A. Lam
(Netherlands Institute for Sea Research)
Abstract
When a container of water is vibrated, its response can be described in terms of large-scale standing waves—the eigenmodes of the system. The belief that enclosed continuous media always possess eigenmodes is deeply rooted. Internal gravity waves in uniformly stratified fluids, however, present a counterexample. Such waves propagate at a fixed angle to the vertical that is determined solely by the forcing frequency, and a sloping side wall of the container will therefore act as a lens, resulting in ray convergence or divergence. An important consequence of this geometric focusing is the prediction1 that, following multiple reflections, these waves will evolve onto specific paths—or attractors—whose locations are determined only by the frequency. Here we report the results of laboratory experiments that confirm that internal-wave attractors, rather than eigenmodes, determine the response of a confined, stably stratified fluid over a broad range of vibration frequencies. The existence of such attractors could be important for mixing processes in ocean basins and lakes, and may be useful for analysing oscillations of the Earth's liquid core and the stability of spinning, fluid-filled spacecraft.
Suggested Citation
Leo R. M. Maas & Dominique Benielli & Joël Sommeria & Frans-Peter A. Lam, 1997.
"Observation of an internal wave attractor in a confined, stably stratified fluid,"
Nature, Nature, vol. 388(6642), pages 557-561, August.
Handle:
RePEc:nat:nature:v:388:y:1997:i:6642:d:10.1038_41509
DOI: 10.1038/41509
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:388:y:1997:i:6642:d:10.1038_41509. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.