IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v388y1997i6641d10.1038_41325.html
   My bibliography  Save this article

Second-order fear conditioning prevented by blocking NMDA receptors in amygdala

Author

Listed:
  • Jonathan C. Gewirtz

    (Yale University, Ribicoff Research Facilities of the Connecticut Mental Health Center)

  • Michael Davis

    (Yale University, Ribicoff Research Facilities of the Connecticut Mental Health Center)

Abstract

Antagonists of NMDA (N-methyl-D-aspartate)-type glutamate receptors disrupt several forms of learning1,2,3,4,5,6,7,8. Although this might indicate that NMDA-receptor-mediated processes are critical for synaptic plasticity, there may be other mechanisms by which NMDA-receptor antagonism could interfere with learning1,9,10,11,12. For instance, fear conditioning would be blocked by microinfusion of the NMDA-receptor antagonist AP5 (D,L-2-amino-5-phosphonovalerate) into the basolateral amygdala6,13,14 if AP5 inhibited routine synaptic transmission, thereby reducing the ability of stimuli to activate amygdala neurons15,16. In second-order fear conditioning17,18, the reinforcer is a fear-eliciting conditioned stimulus rather than an unconditioned stimulus. Expression of conditioned fear is amygdala-dependent19,20 and so provides a behavioural assessment of the ability of the reinforcer to activate amygdala neurons in the presence of AP5. We report here that intra-amygdala AP5 actually enhances expression of conditioned fear to the conditioned stimulus that provides the reinforcement signal for second-order conditioning. Nevertheless, acquisition of second-order fear conditioning is completely blocked. Our findings strongly support the view that NMDA receptors are critically involved in synaptic plasticity.

Suggested Citation

  • Jonathan C. Gewirtz & Michael Davis, 1997. "Second-order fear conditioning prevented by blocking NMDA receptors in amygdala," Nature, Nature, vol. 388(6641), pages 471-474, July.
  • Handle: RePEc:nat:nature:v:388:y:1997:i:6641:d:10.1038_41325
    DOI: 10.1038/41325
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/41325
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/41325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sekun Park & Anqi Zhu & Feng Cao & Richard D. Palmiter, 2024. "Parabrachial Calca neurons mediate second-order conditioning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:388:y:1997:i:6641:d:10.1038_41325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.