IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v388y1997i6638d10.1038_40601.html
   My bibliography  Save this article

Sensitivity of earthquake cycles on the San Andreas fault to small changes in regional compression

Author

Listed:
  • Chi-yuen Wang

    (University of California)

  • Yongen Cai

    (Peking University)

Abstract

The current pattern of slip1,2 within the San Andreas fault system in the San Francisco Bay area is distinctly different from the long-term slip pattern inferred from the geological record3,4. This difference is not surprising because geological data record the accumulated displacements over many earthquake cycles, whereas geodetic data reveal the present-day slip pattern. It is not known, however, what mechanism triggers the change from the ‘inter-seismic’ slip pattern (when the San Andreas fault is locked) to the ‘co-seismic’ slip pattern (when the San Andreas fault ruptures in earthquake slip). Here we use numerical simulations of the entire seismic cycle on this complex fault system to show that the San Andreas fault may be in a critical state and sensitive to small perturbations in regional compression. In particular, we find that small increases in regional compression may lock the San Andreas fault, whereas small decreases in regional compression may release the locked segment and so permit co-seismic slip. This sensitivity suggests that cyclic changes in the regional stress field resulting from plate convergence and thrust faulting in the Coast Ranges could trigger major earthquakes on the San Andreas fault.

Suggested Citation

  • Chi-yuen Wang & Yongen Cai, 1997. "Sensitivity of earthquake cycles on the San Andreas fault to small changes in regional compression," Nature, Nature, vol. 388(6638), pages 158-161, July.
  • Handle: RePEc:nat:nature:v:388:y:1997:i:6638:d:10.1038_40601
    DOI: 10.1038/40601
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/40601
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/40601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:388:y:1997:i:6638:d:10.1038_40601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.