IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v387y1997i6636d10.1038_43141.html
   My bibliography  Save this article

Crystallization of hard-sphere colloids in microgravity

Author

Listed:
  • Jixiang Zhu

    (Princeton University)

  • Min Li

    (Princeton University)

  • R. Rogers

    (‡NASA Lewis Research Center)

  • W. Meyer

    (‡NASA Lewis Research Center)

  • R. H. Ottewill

    (§School of Chemistry, University of Bristol)

  • W. B. Russel

    (Princeton University)

  • P. M. Chaikin

    (Princeton University)

Abstract

The structure of, and transitions between, liquids, crystals and glasses have commonly been studied with the hard-sphere model1,2,3,4,5, in which the atoms are modelled as spheres that interact only through an infinite repulsion on contact. Suspensions of uniform colloidal polymer particles are good approximations to hard spheres6,7,8,9,10,11, and so provide an experimental model system for investigating hard-sphere phases. They display a crystallization transition driven by entropy alone. Because the particles are much larger than atoms, and the crystals are weakly bound, gravity plays a significant role in the formation and structure of these colloidal crystals. Here we report the results of microgravity experiments performed on the Space Shuttle Columbia to elucidate the effects of gravity on colloidal crystallization. Whereas in normal gravity colloidal crystals grown just above the volume fraction at melting show a mixture of random stacking of hexagonally close-packed planes (r.h.c.p.) and face-centred cubic (f.c.c.) packing if allowed time to settle7,8, those in microgravity exhibit the r.h.c.p. structure alone, suggesting that the f.c.c. component may be induced by gravity-induced stresses. We also see dendritic growth instabilities that are not evident in normal gravity, presumably because they are disrupted by shear-induced stresses as the crystals settle under gravity. Finally, glassy samples at high volume fraction which fail to crystallize after more than a year on Earth crystallize fully in less than two weeks in microgravity. Clearly gravity masks or alters some of the intrinsic aspects of colloidal crystallization.

Suggested Citation

  • Jixiang Zhu & Min Li & R. Rogers & W. Meyer & R. H. Ottewill & W. B. Russel & P. M. Chaikin, 1997. "Crystallization of hard-sphere colloids in microgravity," Nature, Nature, vol. 387(6636), pages 883-885, June.
  • Handle: RePEc:nat:nature:v:387:y:1997:i:6636:d:10.1038_43141
    DOI: 10.1038/43141
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/43141
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/43141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Yuliang & Makse, Hernán A., 2010. "A first-order phase transition defines the random close packing of hard spheres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5362-5379.
    2. Ilya Svetlizky & Seongsoo Kim & David A. Weitz & Frans Spaepen, 2023. "Dislocation interactions during plastic relaxation of epitaxial colloidal crystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:387:y:1997:i:6636:d:10.1038_43141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.